论文标题

视觉问题回答数据集中的性别和种族偏见

Gender and Racial Bias in Visual Question Answering Datasets

论文作者

Hirota, Yusuke, Nakashima, Yuta, Garcia, Noa

论文摘要

视觉和语言任务越来越引起人们更多的关注,作为评估机器学习模型中类似人类推理的手段。该领域中的一个流行任务是视觉问题回答(VQA),旨在回答有关图像的问题。但是,VQA模型已被证明可以通过学习问题和答案之间的统计相关性,而无需查看图像内容来利用语言偏见:例如,即使图像中的香蕉是绿色的,也会用黄色回答有关香蕉颜色的问题。如果培训数据中存在社会偏见(例如,性别歧视,种族主义,能力主义等),则此问题可能导致VQA模型学习有害的刻板印象。因此,我们研究了五个VQA数据集中的性别和种族偏见。在我们的分析中,我们发现答案的分布在关于男女的问题之间以及有害性别型样本的存在之间高度不同。同样,我们确定与种族相关的特定属性的代表性不足,而潜在的歧视样本出现在分析的数据集中。我们的发现表明,在不考虑和处理潜在有害的刻板印象的情况下,使用VQA数据集存在危险。我们通过提出解决方案来减轻数据集收集过程之前,期间和之后的问题来结束本文。

Vision-and-language tasks have increasingly drawn more attention as a means to evaluate human-like reasoning in machine learning models. A popular task in the field is visual question answering (VQA), which aims to answer questions about images. However, VQA models have been shown to exploit language bias by learning the statistical correlations between questions and answers without looking into the image content: e.g., questions about the color of a banana are answered with yellow, even if the banana in the image is green. If societal bias (e.g., sexism, racism, ableism, etc.) is present in the training data, this problem may be causing VQA models to learn harmful stereotypes. For this reason, we investigate gender and racial bias in five VQA datasets. In our analysis, we find that the distribution of answers is highly different between questions about women and men, as well as the existence of detrimental gender-stereotypical samples. Likewise, we identify that specific race-related attributes are underrepresented, whereas potentially discriminatory samples appear in the analyzed datasets. Our findings suggest that there are dangers associated to using VQA datasets without considering and dealing with the potentially harmful stereotypes. We conclude the paper by proposing solutions to alleviate the problem before, during, and after the dataset collection process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源