论文标题
部分可观测时空混沌系统的无模型预测
CascadER: Cross-Modal Cascading for Knowledge Graph Link Prediction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Knowledge graph (KG) link prediction is a fundamental task in artificial intelligence, with applications in natural language processing, information retrieval, and biomedicine. Recently, promising results have been achieved by leveraging cross-modal information in KGs, using ensembles that combine knowledge graph embeddings (KGEs) and contextual language models (LMs). However, existing ensembles are either (1) not consistently effective in terms of ranking accuracy gains or (2) impractically inefficient on larger datasets due to the combinatorial explosion problem of pairwise ranking with deep language models. In this paper, we propose a novel tiered ranking architecture CascadER to maintain the ranking accuracy of full ensembling while improving efficiency considerably. CascadER uses LMs to rerank the outputs of more efficient base KGEs, relying on an adaptive subset selection scheme aimed at invoking the LMs minimally while maximizing accuracy gain over the KGE. Extensive experiments demonstrate that CascadER improves MRR by up to 9 points over KGE baselines, setting new state-of-the-art performance on four benchmarks while improving efficiency by one or more orders of magnitude over competitive cross-modal baselines. Our empirical analyses reveal that diversity of models across modalities and preservation of individual models' confidence signals help explain the effectiveness of CascadER, and suggest promising directions for cross-modal cascaded architectures. Code and pretrained models are available at https://github.com/tsafavi/cascader.