论文标题
DIUSST:与互动SST的理想大气模拟的昼夜温暖层的概念模型
DiuSST: A conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive SST
论文作者
论文摘要
海面温度(SST)的昼夜变异性可能对热带海洋上方的云组织起重要作用,这对降水极端,暴风雨和气候敏感性产生了影响。最近的云分辨模拟表明,施加的昼夜SST振荡如何强烈,细致地影响中尺度对流组织。尽管存在这种细微的相互作用,但热带对流的许多理想化的建模研究要么假设恒定,均匀的SST,要么在反应迅速的海面,它由固定厚度的平板代表上海。在这里,我们表明,具有恒定热容量的平板海洋模型无法捕获观察到的昼夜海面变暖的风依赖性。为了减轻这一缺点,我们提出了大气强迫下的上海上温度动力学的简单但明确的深度分辨模型。我们的模块化方案将湍流混合描述为与风相关的扩散率的扩散,除了散装的混合项和作为源和下沉的热通量输入的热通量。使用观测数据,我们应用贝叶斯推断来校准模型。与平板模型相反,我们的模型捕获了昼夜变暖幅度的指数降低,随着风速的增加。此外,我们的模型与更精致的参数化昼夜温暖层模型相当。该模型以三个关键调谐参数为单个部分微分方程配制,适合作为理想大气模拟的交互式数值边界条件。
The diurnal variability of sea surface temperature (SST) may play an important role for cloud organization above the tropical ocean, with implications for precipitation extremes, storminess, and climate sensitivity. Recent cloud-resolving simulations demonstrate how imposed diurnal SST oscillations can strongly, and delicately, impact mesoscale convective organization. In spite of this nuanced interaction, many idealized modeling studies of tropical convection either assume a constant, homogeneous SST or, in case of a responsive sea surface, represent the upper ocean by a slab with fixed thickness. Here we show that slab ocean models with constant heat capacity fail to capture the wind-dependence of observed diurnal sea surface warming. To alleviate this shortcoming, we present a simple, yet explicitly depth-resolved model of upper-ocean temperature dynamics under atmospheric forcing. Our modular scheme describes turbulent mixing as diffusion with a wind-dependent diffusivity, in addition to a bulk mixing term and heat fluxes entering as sources and sinks. Using observational data, we apply Bayesian inference to calibrate the model. In contrast with a slab model, our model captures the exponential reduction of the diurnal warming amplitude with increasing wind speed. Further, our model performs comparably to a more elaborately parameterized diurnal warm layer model. Formulated as a single partial differential equation with three key tuning parameters, the model is suitable as an interactive numerical boundary condition for idealized atmospheric simulations.