论文标题

功能2结构:跨模式大脑网络表示学习

Functional2Structural: Cross-Modality Brain Networks Representation Learning

论文作者

Tang, Haoteng, Fu, Xiyao, Guo, Lei, Wang, Yalin, Mackin, Scott, Ajilore, Olusola, Leow, Alex, Thompson, Paul, Huang, Heng, Zhan, Liang

论文摘要

基于MRI的大脑网络建模已被广泛用于了解大脑区域之间的功能和结构相互作用以及影响它们的因素,例如大脑发育和疾病。大脑网络上的图挖掘可能有助于发现用于临床表型和神经退行性疾病的新型生物标志物。由于源自功能和结构MRI的大脑网络从不同的角度描述了大脑拓扑,因此探索结合了这些跨模式脑网络的表示形式并非平凡。当前的大多数研究旨在通过将结构网络投影到功能对应物中来提取两种类型的大脑网络的融合表示。由于功能网络是动态的,并且结构网络是静态的,因此将静态对象映射到动态对象是次优的。但是,由于当前图学习技术的非阴性要求,朝相反方向的映射是不可行的。在这里,我们提出了一个新颖的图形学习框架,称为深签名的大脑网络(DSBN),并带有签名的图形编码器,从相反的角度来看,它通过将功能网络投射到结构性对应物中来了解跨模式表示。我们使用两个独立的公开数据集(HCP和OASIS)验证了有关临床表型和神经退行性疾病预测任务的框架。与几种最新方法相比,实验结果清楚地证明了我们模型的优势。

MRI-based modeling of brain networks has been widely used to understand functional and structural interactions and connections among brain regions, and factors that affect them, such as brain development and disease. Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. Since brain networks derived from functional and structural MRI describe the brain topology from different perspectives, exploring a representation that combines these cross-modality brain networks is non-trivial. Most current studies aim to extract a fused representation of the two types of brain network by projecting the structural network to the functional counterpart. Since the functional network is dynamic and the structural network is static, mapping a static object to a dynamic object is suboptimal. However, mapping in the opposite direction is not feasible due to the non-negativity requirement of current graph learning techniques. Here, we propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder that, from an opposite perspective, learns the cross-modality representations by projecting the functional network to the structural counterpart. We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源