论文标题

迈向农业监测的空间到地面数据可用性

Towards Space-to-Ground Data Availability for Agriculture Monitoring

论文作者

Choumos, George, Koukos, Alkiviadis, Sitokonstantinou, Vasileios, Kontoes, Charalampos

论文摘要

机器学习的最新进展以及免费和开放的大地数据(例如,哨兵任务)涵盖了具有高空间和时间分辨率的大区域,已使许多农业监视应用程序。一个例子是控制共同农业政策(CAP)的补贴分配。先进的遥感系统已开发用于大规模的循证监测盖。然而,卫星图像的空间分辨率并不总是足以为所有领域做出准确的决策。在这项工作中,我们介绍了从卫星到现场的空间到地面数据可用性的概念,以尝试从不同来源的互补特性中获得最佳状态。我们提供了一个空间到地面数据集,其中包含Sentinel-1雷达和Sentinel-2光学图像时间序列,以及来自众包平台Mapillary的街道级图像,用于2017年UTRECHT地区的草地领域。我们的数据集的多面式实用程序通过草地的下流任务显示了我们数据集的多面效用。我们在这些不同的数据域上训练机器和深度学习算法,并突出了融合技术在提高决策可靠性方面的潜力。

The recent advances in machine learning and the availability of free and open big Earth data (e.g., Sentinel missions), which cover large areas with high spatial and temporal resolution, have enabled many agriculture monitoring applications. One example is the control of subsidy allocations of the Common Agricultural Policy (CAP). Advanced remote sensing systems have been developed towards the large-scale evidence-based monitoring of the CAP. Nevertheless, the spatial resolution of satellite images is not always adequate to make accurate decisions for all fields. In this work, we introduce the notion of space-to-ground data availability, i.e., from the satellite to the field, in an attempt to make the best out of the complementary characteristics of the different sources. We present a space-to-ground dataset that contains Sentinel-1 radar and Sentinel-2 optical image time-series, as well as street-level images from the crowdsourcing platform Mapillary, for grassland fields in the area of Utrecht for 2017. The multifaceted utility of our dataset is showcased through the downstream task of grassland classification. We train machine and deep learning algorithms on these different data domains and highlight the potential of fusion techniques towards increasing the reliability of decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源