论文标题
限制Borexino和Kamland的超轻质无菌中微子
Constraining super-light sterile neutrinos at Borexino and KamLAND
论文作者
论文摘要
超光无菌中微子的存在会导致太阳中微子的存活可能性下降,并解释低能太阳中微子数据中的抑制作用。在这项工作中,我们通过考虑非绝热过渡和相干效应来系统地研究3+1框架中的生存概率。我们获得一个可以预测倾斜位置的分析方程。我们还使用最新的Borexino和Kamland数据对无菌中微子的参数空间进行限制。我们发现,Borexino的低能量中微子数据对无菌中微子参数空间中的不同区域敏感。在情况下,只有$θ_{01} $是非零的,$ \ rm {{{}^{8} b} $数据将最强的界限设置为$δm_{01}^{2}^{2} {2} \ of(1.1}地区。从$ \ rm {pp} $数据$Δm_{01}^{2} $上的最低边界可以达到$ 10^{ - 12} \ \ \ rm {ev^{2}}} $,因为相干效应。另外,由于存在非绝热过渡,范围在$ 10^{ - 9}} \ \ \ \\ textrm {ev}^{2}^{2}^{2} \sillssimΔm_{01}^{2}^{2} {2} {2} \ sillsim 10^{-5} { - 5} { - 5} $Δm_{01}^{2} $或$ \ sin^{2}2θ_{01} $减少。我们还发现,在仅$θ_{02} $或$θ_{03} $的情况下,低能太阳中微子数据集相似,但与仅$θ_{01} $相比的界限相似,但范围较弱。但是,高能太阳能数据和坎兰德数据的边界在很大程度上受无菌混合角的影响。
The presence of a super-light sterile neutrino can lead to a dip in the survival probability of solar neutrinos, and explain the suppression of the upturn in the low energy solar neutrino data. In this work, we systematically study the survival probabilities in the 3+1 framework by taking into account of the non-adiabatic transitions and the coherence effect. We obtain an analytic equation that can predict the position of the dip. We also place constraints on the parameter space of sterile neutrinos by using the latest Borexino and KamLAND data. We find that the low and high energy neutrino data at Borexino are sensitive to different regions in the sterile neutrino parameter space. In the case with only $θ_{01}$ being nonzero, the $\rm{{}^{8}B}$ data sets the strongest bounds at $Δm_{01}^{2} \approx (1.1\sim2.2)Δm_{21}^{2}$, while the low energy neutrino data is more sensitive to other mass-squared regions. The lowest bounds on $Δm_{01}^{2}$ from the $\rm{pp}$ data can reach $10^{-12} \ \rm{eV^{2}}$ because of the coherence effect. Also, due to the presence of non-adiabatic transitions, the bounds in the range of $10^{-9} \ \textrm{eV}^{2} \lesssim Δm_{01}^{2} \lesssim 10^{-5} \ \textrm{eV}^{2}$ become weaker as $Δm_{01}^{2}$ or $\sin^{2}2θ_{01}$ decreases. We also find that in the case with only $θ_{02}$ or $θ_{03}$ being nonzero, the low energy solar neutrino data set similar but weaker bounds as compared to the case with only $θ_{01}$ being nonzero. However, the bounds from the high energy solar data and the KamLAND data are largely affected by the sterile mixing angles.