论文标题

DMRF-UNET:在异质土壤条件下用于GPR数据反演的两阶段深度学习方案

DMRF-UNet: A Two-Stage Deep Learning Scheme for GPR Data Inversion under Heterogeneous Soil Conditions

论文作者

Dai, Qiqi, Lee, Yee Hui, Sun, Hai-Han, Ow, Genevieve, Yusof, Mohamed Lokman Mohd, Yucel, Abdulkadir C.

论文摘要

传统的接地雷达(GPR)数据反演利用迭代算法,这些算法在应用于复杂的地下方案时遭受高计算成本和较低精度的影响。现有的基于深度学习的方法集中在理想的均质地下环境上,而忽略了由于现实世界中异质环境中的杂物和噪声而引起的干扰。为了解决这些问题,提出了一个称为DMRF-UNET的两个阶段深神经网络(DNN),以重建来自异质土壤条件下GPR B-scans地下对象的介电常数分布。在第一阶段,构建了具有多触觉场卷积(MRF-UNET1)的U形DNN,以消除由于异质土壤的不均匀性而消除的剪切。然后将来自MRF-Unet1的deno b扫描与第二阶段的嘈杂的B扫描结合使用,将其输入到DNN(MRF-UNET2)。 MRF-UNET2学习了反向映射关系,并重建地下对象的介电常数分布。为了避免信息丢失,引入了一种结合两个阶段损失功能的端到端训练方法。生成各种地下异构场景和B扫描以评估反转性能。该测试导致数值实验和实际测量结果表明,所提出的网络重建具有高精度地下对象的拼写,形状,大小和位置。与现有方法的比较证明了在异质土壤条件下提出的方法对反转的优越性。

Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms which suffer from high computation costs and low accuracy when applied to complex subsurface scenarios. Existing deep learning-based methods focus on the ideal homogeneous subsurface environments and ignore the interference due to clutters and noise in real-world heterogeneous environments. To address these issues, a two-stage deep neural network (DNN), called DMRF-UNet, is proposed to reconstruct the permittivity distributions of subsurface objects from GPR B-scans under heterogeneous soil conditions. In the first stage, a U-shape DNN with multi-receptive-field convolutions (MRF-UNet1) is built to remove the clutters due to inhomogeneity of the heterogeneous soil. Then the denoised B-scan from the MRF-UNet1 is combined with the noisy B-scan to be inputted to the DNN in the second stage (MRF-UNet2). The MRF-UNet2 learns the inverse mapping relationship and reconstructs the permittivity distribution of subsurface objects. To avoid information loss, an end-to-end training method combining the loss functions of two stages is introduced. A wide range of subsurface heterogeneous scenarios and B-scans are generated to evaluate the inversion performance. The test results in the numerical experiment and the real measurement show that the proposed network reconstructs the permittivities, shapes, sizes, and locations of subsurface objects with high accuracy. The comparison with existing methods demonstrates the superiority of the proposed methodology for the inversion under heterogeneous soil conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源