论文标题

外部校准和验证多个视图激光雷达传感器的多个非重叠场

Extrinsic Calibration and Verification of Multiple Non-overlapping Field of View Lidar Sensors

论文作者

Das, Sandipan, Mahabadi, Navid, Djikic, Addi, Nassir, Cesar, Chatterjee, Saikat, Fallon, Maurice

论文摘要

我们为大型移动平台展示了一个多LADAR校准框架,可以共同校准非重叠视野(FOV)激光雷达传感器的外部参数,而无需任何外部校准辅助工具。该方法首先在随后的时间戳之间估算其相应传感器框架中每个LIDAR的姿势。由于来自激光雷达的姿势估计不一定是同步的,因此我们首先使用基于双季节(DQ)的螺钉线性插值对齐。之后,使用基于DQ的公式来解决基于手眼的校准问题,以恢复外部校准。此外,我们通过匹配所选的激光雷达语义特征来验证外部功能,该功能通过使用车辆运动学后的时间对齐后,通过将LIDAR数据投影到摄像机的视角中获得。从Scania车辆($ \ sim $ 1 km序列)收集的数据的实验结果证明了我们方法获得更好的校准参数的能力,而不是提供的车辆CAD CAD模型校准参数。该设置也可以缩放到多个激光痛的任何组合。

We demonstrate a multi-lidar calibration framework for large mobile platforms that jointly calibrate the extrinsic parameters of non-overlapping Field-of-View (FoV) lidar sensors, without the need for any external calibration aid. The method starts by estimating the pose of each lidar in its corresponding sensor frame in between subsequent timestamps. Since the pose estimates from the lidars are not necessarily synchronous, we first align the poses using a Dual Quaternion (DQ) based Screw Linear Interpolation. Afterward, a Hand-Eye based calibration problem is solved using the DQ-based formulation to recover the extrinsics. Furthermore, we verify the extrinsics by matching chosen lidar semantic features, obtained by projecting the lidar data into the camera perspective after time alignment using vehicle kinematics. Experimental results on the data collected from a Scania vehicle [$\sim$ 1 Km sequence] demonstrate the ability of our approach to obtain better calibration parameters than the provided vehicle CAD model calibration parameters. This setup can also be scaled to any combination of multiple lidars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源