论文标题
电磁复合材料:从有效的中等理论到超材料
Electromagnetic Composites: from Effective Medium Theories to Metamaterials
论文作者
论文摘要
由于其柔性电磁特性和广泛的潜在工程应用,电磁(EM)复合材料刺激了巨大的基本和实际利益。因此,有必要系统地了解控制EM复合材料的物理机制和设计原理。在本教程中,我们首先概述了有关电磁本构参数的电磁基本理论,该理论可以代表材料的电磁特性。我们展示了该语料库如何允许构造有效的媒介理论,并允许对EM复合材料进行数值模拟来处理结构 - 陶艺关系。然后,我们讨论材料介质中形状夹杂物在复合材料特性上的空间分散体的影响,这在该跨学科主题的背景下没有系统地说明。接下来,强调具有特殊特性的人造复合材料或超材料,特别强调了与复合材料相互作用的控制。我们通过讨论适当的电磁测量方法和为特定应用实施复合材料的实践方面来结束。总体而言,本教程将有目的是将电磁复合材料的基础和应用引入该领域的新移民。还可以预料,来自材料科学,光学和电气工程在内的不同背景的研究人员在处理这一跨学科主题时可以用相同的语言进行交流,并进一步推动从基本科学到技术应用的进步。
Electromagnetic (EM) composites have stimulated tremendous fundamental and practical interests owing to their flexible electromagnetic properties and extensive potential engineering applications. Hence, it is necessary to systematically understand the physical mechanisms and design principles controlling EM composites. In this tutorial, we first provide an overview of the basic theory of electromagnetism about electromagnetic constitutive parameters that can represent the electromagnetic properties of materials. We show how this corpus allows a consistent construction of effective medium theories and allows for numerical simulation of EM composites to deal with structure-property relationships. We then discuss the influence of spatial dispersion of shaped inclusions in the material medium on the EM properties of composites, which has not been systematically illustrated in the context of this interdisciplinary topic. Next, artificial composites or metamaterials with peculiar properties not readily available in nature are highlighted with particular emphasis on the control of the EM interaction with composites. We conclude by discussing appropriate methods of electromagnetic measurement and practical aspects for implementing composites for specific applications are described. Overall, this tutorial will serve the purpose of introducing the basics and applications of electromagnetic composites to newcomers in this field. It is also anticipated that researchers from different backgrounds including materials science, optics, and electrical engineering can communicate to each other with the same language when dealing with this interdisciplinary subject and further push forward this advancement from fundamental science to technological applications.