论文标题

关于压电能量收割机的能量收集和感应的联合优化:缆桥的案例研究

On the Joint Optimization of Energy Harvesting and Sensing of Piezoelectric Energy Harvesters: Case Study of a Cable-Stayed Bridge

论文作者

Peralta-Braz, Patricio, Alamdari, Mehrisadat Makki, Ruiz, Rafael O., Atroshchenko, Elena, Hassan, Mahbub

论文摘要

通常采用压电能量收割机(PEHS)来为传感系统提供其他能源。但是,研究表明,PEH也可以用作传感器,通过分析产生的电压信号来获取有关振动源的信息。这打开了创建同时收集和传感(SEHS)系统的可能性,其中一块硬件(PEH)既充当收割机和传感器。这就提出了一个问题,如果可以设计具有最佳收获和传感性能的双功能PEH设备。在这项工作中,我们提出了一个双目标PEH设计优化框架,并表明在PEH设计领域内能量收集效率和感应准确性之间存在权衡。该拟议的框架基于从澳大利亚新南威尔士州的现实World Operational CableStated Bridge收集的广泛振动(应变和加速度)数据集。桥接加速度数据用作PEH数值模型的输入,以模拟电压信号并估计产生的能量的量。数值PEH模型基于Kirchhoff-love板和等几何分析。为了感测,卷积神经网络Alexnet经过训练,以识别电压CWT(连续小波变换)图像的交通速度标签。为了提高方法的计算效率,建立了Kriging Metamodel,并将遗传算法用作优化方法。结果以三个设计空间的帕累托前沿形式呈现。

Piezoelectric Energy Harvesters (PEHs) are typically employed to provide additional source of energy for a sensing system. However, studies show that a PEH can be also used as a sensor to acquire information about the source of vibration by analysing the produced voltage signal. This opens a possibility to create Simultaneous Energy Harvesting and Sensing (SEHS) system, where a single piece of hardware, a PEH, acts as both, a harvester and as a sensor. This raises a question if it is possible to design a bi-functional PEH device with optimal harvesting and sensing performance. In this work, we propose a bi-objective PEH design optimisation framework and show that there is a trade-off between energy harvesting efficiency and sensing accuracy within a PEH design space. The proposed framework is based on an extensive vibration (strain and acceleration) dataset collected from a real-world operational cable-stayed bridge in New South Wales, Australia. The bridge acceleration data is used as an input for a PEH numerical model to simulate a voltage signal and estimate the amount of produced energy. The numerical PEH model is based on the Kirchhoff-Love plate and isogeometric analysis. For sensing, convolutional neural network AlexNet is trained to identify traffic speed labels from voltage CWT (Continuous Wavelet Transform) images. In order to improve computational efficiency of the approach, a kriging metamodel is built and genetic algorithm is used as an optimisation method. The results are presented in the form of Pareto fronts in three design spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源