论文标题
严格的多车道混合交通模型及其通过自动驾驶汽车耗散波浪的平均场限制
A rigorous multi-population multi-lane hybrid traffic model and its mean-field limit for dissipation of waves via autonomous vehicles
论文作者
论文摘要
在本文中,提出了一个多车道的多车道多人口显微镜模型,该模型提出了停止和GO波,以模拟环形路上的流量。车辆在人类驱动和自动驾驶汽车(AV)之间分配。控制策略的设计最终目标是使用少量的AV(小于5 \%的渗透率)来表示可以平滑多层交通流并消散停车浪潮的拉格朗日控制执行器。反过来,这可能会减少燃料消耗和排放。 改变车道的机制基于三个组件,我们将其视为模型中的参数:安全性,激励和凉爽时间。在车道变换机制中选择这些参数对于准确建模流量至关重要,因为不同的参数值可以导致截然不同的流量行为。特别是,车道变换的数量和速度差异受参数选择的高度影响。尽管有一个建模问题,但是当对AVS使用足够简单且可靠的控制器时,均匀流动稳态的稳定对参数的任何现实值有效,并最终绕过观察到的建模问题。我们的方法基于准确,严格的数学模型,该模型允许在气体动态术语中,称为限制过程。简而言之,从增加人类驱动的人群到无限,可以获得一个耦合的普通和部分微分方程的系统。此外,控制问题还传递到极限,从而使设计可以在不同的尺度上解决。
In this paper, a multi-lane multi-population microscopic model, which presents stop and go waves, is proposed to simulate traffic on a ring-road. Vehicles are divided between human-driven and autonomous vehicles (AV). Control strategies are designed with the ultimate goal of using a small number of AVs (less than 5\% penetration rate) to represent Lagrangian control actuators that can smooth the multilane traffic flow and dissipate the stop-and-go waves. This in turn may reduce fuel consumption and emissions. The lane-changing mechanism is based on three components that we treat as parameters in the model: safety, incentive and cool-down time. The choice of these parameters in the lane-change mechanism is critical to modeling traffic accurately, because different parameter values can lead to drastically different traffic behaviors. In particular, the number of lane-changes and the speed variance are highly affected by the choice of parameters. Despite this modeling issue, when using sufficiently simple and robust controllers for AVs, the stabilization of uniform flow steady-state is effective for any realistic value of the parameters, and ultimately bypasses the observed modeling issue. Our approach is based on accurate and rigorous mathematical models, which allows a limit procedure that is termed, in gas dynamic terminology, mean-field. In simple words, from increasing the human-driven population to infinity, a system of coupled ordinary and partial differential equations are obtained. Moreover, control problems also pass to the limit, allowing the design to be tackled at different scales.