论文标题

Minkowski空间中$σ_K$曲率流量的全部自我膨胀者

Entire self-expanders for power of $σ_k$ curvature flow in Minkowski space

论文作者

Wang, Zhizhang, Xiao, Ling

论文摘要

In [19], we prove that if an entire, spacelike, convex hypersurface $\mathcal{M}_{u_0}$ has bounded principal curvatures, then the $σ_k^{1/α}$ (power of $σ_k$) curvature flow starting from $\mathcal{M}_{u_0}$ admits a smooth convex solution $ u $ for $ t> 0。此外,在重新进行续订后,该流量会收敛到一个suffander $ \ tilde {\ mathcal {\ Mathcal {m}} = \ {(x,x,x,x,\ tilde {u}(x)(x)(x)) $σ_K(κ[\ tilde {\ Mathcal {m}}])=( - \ weft <x_0,ν_0\ right>)^α。在本文中,我们填补了空白。

In [19], we prove that if an entire, spacelike, convex hypersurface $\mathcal{M}_{u_0}$ has bounded principal curvatures, then the $σ_k^{1/α}$ (power of $σ_k$) curvature flow starting from $\mathcal{M}_{u_0}$ admits a smooth convex solution $u$ for $t>0.$ Moreover, after rescaling, the flow converges to a convex self-expander $\tilde{\mathcal{M}}=\{(x, \tilde{u}(x))\mid x\in\mathbb{R}^n\}$ that satisfies $σ_k(κ[\tilde{\mathcal{M}}])=(-\left<X_0, ν_0\right>)^α.$ Unfortunately, the existence of self-expander for power of $σ_k$ curvature flow in Minkowski space has not been studied before. In this paper, we fill the gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源