论文标题
MICE-GC中确定的深色晕圈特性的新目录 - I.密度分布的分析
New catalogue of dark-matter halo properties identified in MICE-GC -- I. Analysis of density profile distributions
论文作者
论文摘要
通过使用有关其密度分布的形态的其他信息,可以显着改善对暗物质光环质量的限制,从而显着改善,从而导致从光晕质量函数得出的更严格的宇宙学约束。这项工作是我们研究2D和3D中光环形态和质量测量的准确性的两项工作。为此,我们确定只有仿真的小鼠挑战暗物质中的几种光环物理特性。我们提供了这些特性的公共目录,其中包括以2D和3D测量的密度曲线和形状参数,3D密度分布的峰值的光环中心以及引力和动力学能量以及角动量向量。考虑到光环形状,使用球形和椭圆形径向箱计算密度曲线。我们还使用NFW和EINASTO模型提供了从拟合到2D和3D密度曲线的光环浓度和质量,用于Halos,其颗粒超过$ 1000 $颗粒($ \ gtrsim 3 \ times 10^{13} {13} h^{ - 1} m _ {\ odot} $)。我们发现,与NFW相比,Einasto模型可提供更好的拟合度,而不管光晕弛豫状态和形状如何。从拟合到2D轮廓的3D密度曲线的质量和浓度参数通常是偏见的。当使用弱透明堆叠分析来限制质量和浓度时,也会获得类似的偏见。我们表明,这些偏差取决于拟合程序中采用的径向范围和密度曲线模型,但不取决于光环形状。
Constraints on dark matter halo masses from weak gravitational lensing can be improved significantly by using additional information about the morphology of their density distribution, leading to tighter cosmological constraints derived from the halo mass function. This work is the first of two in which we investigate the accuracy of halo morphology and mass measurements in 2D and 3D. To this end, we determine several halo physical properties in the MICE-Grand Challenge dark matter only simulation. We present a public catalogue of these properties that includes density profiles and shape parameters measured in 2D and 3D, the halo centre at the peak of the 3D density distribution as well as the gravitational and kinetic energies and angular momentum vectors. The density profiles are computed using spherical and ellipsoidal radial bins, taking into account the halo shapes. We also provide halo concentrations and masses derived from fits to 2D and 3D density profiles using NFW and Einasto models for halos with more than $1000$ particles ($\gtrsim 3 \times 10^{13} h^{-1} M_{\odot}$). We find that the Einasto model provides better fits compared to NFW, regardless of the halo relaxation state and shape. The mass and concentration parameters of the 3D density profiles derived from fits to the 2D profiles are in general biased. Similar biases are obtained when constraining mass and concentrations using a weak-lensing stacking analysis. We show that these biases depend on the radial range and density profile model adopted in the fitting procedure, but not on the halo shape.