论文标题

可证明可用于乘法控制噪声的最佳控制

Provably Optimal Control for Multiplicative Amplitude Control Noise

论文作者

Trout, Colin J., Schultz, Kevin, Titum, Paraj, Norris, Leigh, Quiroz, Gregory, Clader, and B. David

论文摘要

我们提供了一种技术,可在时间相关的乘法控制噪声的影响下获得量子系统的最佳控制序列。利用[物理学中引入的电路级噪声模型。 Rev. Research 3,033229(2021)],我们表明,我们可以绘制出将这样一个序列的问题映射到凸优化问题的问题,并保证从凸度开始。我们还表明,该技术与更一般的离轴时间相关的散发噪声兼容。尽管丢失了可证明的最优性,但在这种情况下,当控制噪声相对于DEPHAS的贡献而言,数值优化的控制序列仍然可以达到几乎最佳的性能。这种方法将使最佳的量子逻辑门在系统中的最佳量子逻辑门开发,在该系统中,由于控制中的振幅漂移引起的噪声相对于基于离子陷阱的量子计算机或快速控制的极限而言相对于dephasing而言。

We provide a technique to obtain provably optimal control sequences for quantum systems under the influence of time-correlated multiplicative control noise. Utilizing the circuit-level noise model introduced in [Phys. Rev. Research 3, 033229(2021)], we show that we can map the problem of finding such a sequence to a convex optimization problem with guaranteed optimality that follows from the convexity. We also show that this technique is compatible with more general off-axis time-correlated dephasing noise. In spite of losing provable optimality, numerically optimized control sequences under this scenario can still achieve nearly optimal performance when the control noise is strong relative to the dephasing contribution. This approach will enable the development of optimal quantum logic gates in systems where noise due to amplitude drifts in the control is strong relative to dephasing such as in ion-trap based quantum computers or in the limit of fast control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源