论文标题
评估没有地面真相的机器的视频编码
Evaluation of Video Coding for Machines without Ground Truth
论文作者
论文摘要
在机器的视频编码领域中,需要进行原始视频质量和高质量注释的视频数据集以进行全面评估。但是,现有带有详细注释的视频数据集的大小和视频质量受到严重限制。因此,当前的方法必须在静止图像上评估其编解码器,也必须对已经被压缩的数据进行评估。为了减轻此问题,我们提出了一种基于从语义分割领域的伪基真实数据到计算机评估的评估方法。通过广泛的评估,本文表明,与在中距离比特率中使用真实的地面真相相比,提议的地面真实性不足的评估方法使Bbjontegaard三角洲率的0.7个百分点可接受的绝对测量误差低于0.7个百分点。我们评估语义分割,实例分割和对象检测的三个任务。最后,我们利用地面 - 不稳定方法来测量VVC与CityScapes序列上的HEVC相比的编码性能。这表明编码位置对任务绩效有重大影响。
In the emerging field of video coding for machines, video datasets with pristine video quality and high-quality annotations are required for a comprehensive evaluation. However, existing video datasets with detailed annotations are severely limited in size and video quality. Thus, current methods have to either evaluate their codecs on still images or on already compressed data. To mitigate this problem, we propose an evaluation method based on pseudo ground-truth data from the field of semantic segmentation to the evaluation of video coding for machines. Through extensive evaluation, this paper shows that the proposed ground-truth-agnostic evaluation method results in an acceptable absolute measurement error below 0.7 percentage points on the Bjontegaard Delta Rate compared to using the true ground truth for mid-range bitrates. We evaluate on the three tasks of semantic segmentation, instance segmentation, and object detection. Lastly, we utilize the ground-truth-agnostic method to measure the coding performances of the VVC compared against HEVC on the Cityscapes sequences. This reveals that the coding position has a significant influence on the task performance.