论文标题
在Whitehead的CUT顶点引理上
On Whitehead's cut vertex lemma
论文作者
论文摘要
怀特海(Whitehead)著名的剪切顶点引理的一个版本说,如果一个自由组的元素是免费基础的一部分,那么我们称之为星形图的某些图形与其共轭类关联,要么是断开连接的,要么具有剪切顶点。我们陈述并证明了这种引理的版本,用于元素的共轭类别和共同处理的构造类别的亚组,这些组作用在具有有限生成的边缘稳定器的树上作用。
One version of Whitehead's famous cut vertex lemma says that if an element of a free group is part of a free basis, then a certain graph associated to its conjugacy class that we call the star graph is either disconnected or has a cut vertex. We state and prove a version of this lemma for conjugacy classes of elements and convex-cocompact subgroups of groups acting cocompactly on trees with finitely generated edge stabilizers.