论文标题
非绝热的从头算分子动力学,包括自旋轨道耦合和激光场
Nonadiabatic ab initio molecular dynamics including spin-orbit coupling and laser fields
论文作者
论文摘要
非绝热的始于分子动力学(MD),包括自旋轨道耦合(SOC)和激光场作为兴奋状态过程研究的一般工具。到目前为止,SOCS尚未包含在标准的AB Ineli算MD软件包中。因此,向三胞胎状态的过渡不能直接处理。然而,三胞胎状态在各种系统中起着重要作用,现在可以在给定的框架内处理。激光相互作用以非扰动水平进行处理,该级别允许考虑强烈的鲜明偏移等非线性效应。由于MD允许处理许多原子,因此可以访问大分子系统的三重态和单线状态之间的相互作用。为了测试该方法,IBR被视为模型系统,SOC在潜在曲线的形状以及因此动力学的形状中起着至关重要的作用。此外,考虑了非共振动态鲜明效应的影响。后者能够在适应性条件下通过电场控制反应屏障,因此使用这种效应的对照激光像光子催化剂一样。在IBR分子中,可以影响避免由SOC产生的避免穿越的分支比率受到影响。
Nonadiabatic ab initio molecular dynamics (MD) including spin-orbit coupling (SOC) and laser fields is investigated as a general tool for studies of excited-state processes. Up to now, SOCs are not included in standard ab initio MD packages. Therefore, transitions to triplet states cannot be treated in a straightforward way. Nevertheless, triplet states play an important role in a large variety of systems and can now be treated within the given framework. The laser interaction is treated on a non-perturbative level that allows nonlinear effects like strong Stark shifts to be considered. As MD allows for the handling of many atoms, the interplay between triplet and singlet states of large molecular systems will be accessible. In order to test the method, IBr is taken as a model system, where SOC plays a crucial role for the shape of the potential curves and thus the dynamics. Moreover, the influence of the nonresonant dynamic Stark effect is considered. The latter is capable of controlling reaction barriers by electric fields in timereversible conditions, and thus a control laser using this effect acts like a photonic catalyst. In the IBr molecule, the branching ratio at an avoided crossing, which arises from SOC, can be influenced.