论文标题

将合成数据集的数量集成到“先验”合成方法中

On integrating the number of synthetic data sets $m$ into the 'a priori' synthesis approach

论文作者

Jackson, James Edward, Mitra, Robin, Francis, Brian Joseph, Dove, Iain

论文摘要

直到最近,始终将多个合成数据集释放给分析师,以允许获得有效的推论。但是,在某些条件下 - 包括使用饱和计数模型合成分类数据时 - 单次插补($ m = 1 $)就足够了。然而,增加$ m $会导致实用性改善,但以较高的风险为代价,这是风险实用权衡的一个例子。因此,问题是:相对于风险实现权衡,$ m $的哪个值是最佳的?此外,本文考虑了分析分类数据集的两种方法:由于它们具有偶性表表示,因此可以在分析之前平均多个分类数据集,而不是平均分析后的通常方式。本文还介绍了一对指标,$τ_3(k,d)$和$τ_4(k,d)$,这些指标适用于评估多个分类合成数据集中的披露风险。最后,综合方法得到了经验证明。

Until recently, multiple synthetic data sets were always released to analysts, to allow valid inferences to be obtained. However, under certain conditions - including when saturated count models are used to synthesize categorical data - single imputation ($m=1$) is sufficient. Nevertheless, increasing $m$ causes utility to improve, but at the expense of higher risk, an example of the risk-utility trade-off. The question, therefore, is: which value of $m$ is optimal with respect to the risk-utility trade-off? Moreover, the paper considers two ways of analysing categorical data sets: as they have a contingency table representation, multiple categorical data sets can be averaged before being analysed, as opposed to the usual way of averaging post-analysis. This paper also introduces a pair of metrics, $τ_3(k,d)$ and $τ_4(k,d)$, that are suited for assessing disclosure risk in multiple categorical synthetic data sets. Finally, the synthesis methods are demonstrated empirically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源