论文标题
自动音频字幕:概述最近进度和新挑战
Automated Audio Captioning: An Overview of Recent Progress and New Challenges
论文作者
论文摘要
自动音频字幕是一项跨模式翻译任务,旨在为给定的音频剪辑生成自然语言描述。近年来,随着免费可用数据集的发布,该任务引起了越来越多的关注。该问题主要通过深度学习技术解决。已经提出了许多方法,例如研究不同的神经网络架构,利用辅助信息,例如关键字或句子信息来指导字幕生成,并采用了不同的培训策略,这些策略极大地促进了该领域的发展。在本文中,我们对自动音频字幕的已发表贡献进行了全面综述,从各种现有方法到评估指标和数据集。我们还讨论了公开挑战,并设想可能的未来研究方向。
Automated audio captioning is a cross-modal translation task that aims to generate natural language descriptions for given audio clips. This task has received increasing attention with the release of freely available datasets in recent years. The problem has been addressed predominantly with deep learning techniques. Numerous approaches have been proposed, such as investigating different neural network architectures, exploiting auxiliary information such as keywords or sentence information to guide caption generation, and employing different training strategies, which have greatly facilitated the development of this field. In this paper, we present a comprehensive review of the published contributions in automated audio captioning, from a variety of existing approaches to evaluation metrics and datasets. We also discuss open challenges and envisage possible future research directions.