论文标题
在带有拐角处的域名上的投影不变的Hardy空间
Projectively Invariant Hardy Spaces on Domains with Corners
论文作者
论文摘要
对于平滑界限的,强烈的$ \ Mathbb {C} $ - 凸域,可以使用Fefferman形式或其变体来定义全体形态线捆绑包的部分不变的规范,从而产生硬性空间。在两个变量中,我们在零件平滑域的奇异部分上构建了一个不变的度量,并表明这种不变的阳性与强烈的$ \ mathbb {c} $的概念相吻合 - 与cauchy-fantappié-leray-leray-leray-leray-leray-leray kernels相兼容,从而使splook spection spection spection spection spection spection spectian case and define vention spectian case and couchy-fantappié-leray-leray-leray-leray-leray-neary spection coptatient。
For smoothly bounded, strongly $\mathbb{C}$-convex domains, one can use the Fefferman form or its variants to define projectively invariant norms on sections of holomorphic line bundles, producing a Hardy space. In two variables, we construct a projectively invariant measure on the singular part of a piece-wise smooth domain, and show that positivity of this invariant coincides with a notion of strong $\mathbb{C}$-convexity that is compatible with Cauchy-Fantappié-Leray kernels, and thus define projectively invariant Hardy spaces as in the smooth case.