论文标题
儿童和青少年精神病学的计算行为识别:统计和机器学习分析计划
Computational behavior recognition in child and adolescent psychiatry: A statistical and machine learning analysis plan
论文作者
论文摘要
动机:行为观察是心理现象研究和评估的重要资源,但昂贵,耗时且容易受到偏见的影响。因此,我们旨在在人工智能(AI)工具的帮助下对人类行为的编码进行自动化,以在心理治疗和研究中使用。在这里,我们提出了一个分析计划。方法:将分析25种强迫症(OCD)青年的金标准半结构化诊断访谈的视频和12名没有精神诊断的青年(NO-OCD)。年轻人在8至17岁之间。视频的功能将被提取并用于计算行为的评分,这将与受过特定行为编码手册的精神卫生专业人员产生的行为评级进行比较。我们将使用多元方差分析(MANOVA)测试强迫症诊断对计算衍生的行为评级的影响。使用生成的功能,将构建和用于对OCD/NO-OCD类进行分类的二进制分类模型。讨论:在这里,我们提出了一个预定义的计划,以在结果出版及其解释中如何预处理,分析和介绍数据。拟议的研究的一个挑战是,AI方法将尝试仅根据视觉得出行为评级,而人类使用视觉,副语言和语言提示来评估行为。另一个挑战将是将机器学习模型用于身体和面部运动检测,主要是在成人而不是儿童上训练的。如果AI工具显示出令人鼓舞的结果,则此预先注册的分析计划可能有助于减少解释偏见。试验注册:临床Trials.gov -H -18010607
Motivation: Behavioral observations are an important resource in the study and evaluation of psychological phenomena, but it is costly, time-consuming, and susceptible to bias. Thus, we aim to automate coding of human behavior for use in psychotherapy and research with the help of artificial intelligence (AI) tools. Here, we present an analysis plan. Methods: Videos of a gold-standard semi-structured diagnostic interview of 25 youth with obsessive-compulsive disorder (OCD) and 12 youth without a psychiatric diagnosis (no-OCD) will be analyzed. Youth were between 8 and 17 years old. Features from the videos will be extracted and used to compute ratings of behavior, which will be compared to ratings of behavior produced by mental health professionals trained to use a specific behavioral coding manual. We will test the effect of OCD diagnosis on the computationally-derived behavior ratings using multivariate analysis of variance (MANOVA). Using the generated features, a binary classification model will be built and used to classify OCD/no-OCD classes. Discussion: Here, we present a pre-defined plan for how data will be pre-processed, analyzed and presented in the publication of results and their interpretation. A challenge for the proposed study is that the AI approach will attempt to derive behavioral ratings based solely on vision, whereas humans use visual, paralinguistic and linguistic cues to rate behavior. Another challenge will be using machine learning models for body and facial movement detection trained primarily on adults and not on children. If the AI tools show promising results, this pre-registered analysis plan may help reduce interpretation bias. Trial registration: ClinicalTrials.gov - H-18010607