论文标题

关于充满物质的bianchi i Universe中引力波的传播

On the propagation of gravitational waves in matter-filled Bianchi I universe

论文作者

Datta, Sucheta, Guha, Sarbari, Chakraborty, Samarjit

论文摘要

在本文中,我们应用了雷格轮毂形式主义,研究充满物质填充的bianchi i宇宙中轴向和极性重力波的传播。假设背景时空的扩展标量$θ$与剪切标量$σ$成正比,我们在存在物质的情况下求解了背景场方程(发现像硬流体一样行为)。然后,我们得出轴向和极性模式的线性化扰动方程。真空时期中的分析溶液可以在较早的论文\ cite {gd1}中以相对简单的方式确定。但是,在这里,我们发现在物质存在的情况下,它们需要更多的解决方案的假设,并承担更多涉及的形式。与轴向模式相比,极性扰动方程在扰动项中包含更复杂的耦合。因此,我们必须采用合适的假设来为某些极性扰动情况得出分析溶液。在轴向和极性情况下,扰动的径向和时间溶液将其分为产品。我们发现,由于背景各向异性,轴向波被阻尼,并且只能变形流体的方位角速度。相反,极波必须触发能量密度,压力以及流体速度的非齐路成分中的扰动。轴向和极性重力波在Kantowski-Sachs Universe \ cite {gd2}中传播出来。我们的工作与在\ cite {syk}中所做的工作相反,在\ cite {syk}中,作者分析了由卡斯纳时空和林德勒楔子建模的各向异性宇宙,并使用RW仪表中的量规扰动方法进行了模型。

In this paper we apply the Regge-Wheeler formalism to study the propagation of axial and polar gravitational waves in matter-filled Bianchi I universe. Assuming that the expansion scalar $ Θ$, of the background space-time, is proportional to the shear scalar $ σ$, we solved the background field equations in the presence of matter (found to behave like a stiff fluid). We then derive the linearised perturbation equations for both the axial and polar modes. The analytical solutions in vacuum spacetime could be determined in an earlier paper \cite{GD1} in a relatively straightforward manner. However, here we find that in the presence of matter, they require more assumptions for their solution, and bear more involved forms. As compared to the axial modes, the polar perturbation equations contain far more complicated couplings among the perturbing terms. Thus we have to apply suitable assumptions to derive the analytical solutions for some of the cases of polar perturbations. In both the axial and polar cases, the radial and temporal solutions for the perturbations separate out as products. We find that the axial waves are damped owing to the background anisotropy, and can deform only the azimuthal velocity of the fluid. In contrast, the polar waves must trigger perturbations in the energy density, the pressure as well as in the non-azimuthal components of the fluid velocity. Similar behaviour is exhibited by axial and polar gravitational waves propagating in the Kantowski-Sachs universe \cite{GD2}. Our work is in contrast to the work done in \cite{SYK}, where the authors analysed anisotropic universes modelled by Kasner spacetime and Rindler wedges using the method of gauge-invariant perturbations in the RW gauge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源