论文标题

关于Gelfand-Graev表示的内态代数II

On endomorphism algebras of Gelfand-Graev representations II

论文作者

Li, Tzu-Jan, Shotton, Jack

论文摘要

令$ g $为特征$ p $的有限字段$ \ mathbb {f} _q $定义的连接还原组,带有deligne-lusztig dual $ g^\ ast $。我们表明,超过$ \ overline {\ m马布{z}} [1/pm] $,其中$ m $是$ g $的所有不良数量的产物,$ g $,gelfand-graev-graev-graev表示$ g(\ mathbb {f} _q)$是Grothendieeck ringimention difime difor的ringiment of grothendieeck ringiment of grothendieeck。 $ edline {\ mathbb {f}} _ q $ - $ g^\ ast的列表(\ mathbb {f} _q)$。

Let $G$ be a connected reductive group defined over a finite field $\mathbb{F}_q$ of characteristic $p$, with Deligne--Lusztig dual $G^\ast$. We show that, over $\overline{\mathbb{Z}}[1/pM]$ where $M$ is the product of all bad primes for $G$, the endomorphism ring of a Gelfand--Graev representation of $G(\mathbb{F}_q)$ is isomorphic to the Grothendieck ring of the category of finite-dimensional $\overline{\mathbb{F}}_q$-representations of $G^\ast(\mathbb{F}_q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源