论文标题

通过直接组合EBSD和反向散射电子成像,对回收的Al-MN合金的粒子分析和颗粒分析

Correlated subgrain and particle analysis of a recovered Al-Mn alloy by directly combining EBSD and backscatter electron imaging

论文作者

Ånes, Håkon Wiik, van Helvoort, Antonius T. J., Marthinsen, Knut

论文摘要

合金中(子)颗粒和颗粒的相关分析对于了解转化过程和控制材料特性很重要。提供了一种多模式数据融合工作流,该工作流直接结合了来自电子反向散射(EBSD)的亚晶粒数据,以及来自扫描电子显微镜中反向散射电子(BSE)图像的粒子数据。 BSE图像可检测到小于EBSD的施加步长的颗粒,直径为0.03 $ $ m。在冷卷和回收的Al-MN合金上证明了工作流程,其中在铸造过程中形成的成分颗粒和随后加热期间形成的分散体会影响退火后的恢复和重结晶。多模式数据集可实现统计分析,包括围绕构成粒子的亚晶粒和相对于亚晶边界的分散位置。在重结晶纹理的亚晶格中,立方体{001} $ \ weft <100 \右> $ subgrains经历了史密斯 - zener的限制,而与cubend {001} $ \ weft <310 \右<310 \ right> $和p {011} $ \ eft p {011} $ \ leat <\ bar \ bar \ bar \ bar \ bar \ bar \ bar {5 {5 {5} cys Smith-Zener在界限上的阻力增加了。后者经历了最低的阻力。由于位错密度和较高的边界不良角度,观察到成分颗粒处的亚晶体具有生长优势。每个亚晶粒边界长度的分散尺寸随着不良方向角度的函数而增加。工作流程应适用于其他合金系统,其中需要分析将晶粒和晶界与小于应用的EBSD步骤尺寸小但可通过BSE成像解析的次级相关。

Correlated analysis of (sub)grains and particles in alloys is important to understand transformation processes and control material properties. A multimodal data fusion workflow directly combining subgrain data from electron backscatter diffraction (EBSD) and particle data from backscatter electron (BSE) images in the scanning electron microscope is presented. The BSE images provide detection of particles smaller than the applied step size of EBSD down to 0.03 $μ$m in diameter. The workflow is demonstrated on a cold-rolled and recovered Al-Mn alloy, where constituent particles formed during casting and dispersoids formed during subsequent heating affect recovery and recrystallization upon annealing. The multimodal dataset enables statistical analysis including subgrains surrounding constituent particles and dispersoids' location with respect to subgrain boundaries. Among the subgrains of recrystallization texture, Cube{001}$\left<100\right>$ subgrains experience an increased Smith-Zener drag from dispersoids on their boundaries compared to CubeND{001}$\left<310\right>$ and P{011}$\left<\bar{5}\bar{6}6\right>$ subgrains, with the latter experiencing the lowest drag. Subgrains at constituent particles are observed to have a growth advantage due to a lower dislocation density and higher boundary misorientation angle. The dispersoid size per subgrain boundary length increases as a function of misorientation angle. The workflow should be applicable to other alloy systems where there is a need for analysis correlating grains and grain boundaries with secondary phases smaller than the applied EBSD step size but resolvable by BSE imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源