论文标题

阅读:自动驾驶的大规模神经场景渲染

READ: Large-Scale Neural Scene Rendering for Autonomous Driving

论文作者

Li, Zhuopeng, Li, Lu, Ma, Zeyu, Zhang, Ping, Chen, Junbo, Zhu, Jianke

论文摘要

合成的自由视图 - 现实图像是多媒体中的重要任务。随着高级驾驶员辅助系统〜(ADA)及其在自动驾驶汽车中的应用,尝试不同的情况成为一个挑战。尽管可以通过图像到图像翻译方法综合照片真实的街道场景,但由于缺乏3D信息,该方法无法产生连贯的场景。在本文中,提出了一种大规模的神经渲染方法来综合自主驾驶场景〜(读取),这使得通过各种采样方案在PC上合成大规模驾驶场景成为可能。为了表示驾驶场景,我们提出了一个ω渲染网络,以从稀疏点云中学习神经描述符。我们的模型不仅可以综合现实的驾驶场景,还可以缝合和编辑驾驶场景。实验表明,我们的模型在大规模驾驶场景中表现良好。

Synthesizing free-view photo-realistic images is an important task in multimedia. With the development of advanced driver assistance systems~(ADAS) and their applications in autonomous vehicles, experimenting with different scenarios becomes a challenge. Although the photo-realistic street scenes can be synthesized by image-to-image translation methods, which cannot produce coherent scenes due to the lack of 3D information. In this paper, a large-scale neural rendering method is proposed to synthesize the autonomous driving scene~(READ), which makes it possible to synthesize large-scale driving scenarios on a PC through a variety of sampling schemes. In order to represent driving scenarios, we propose an ω rendering network to learn neural descriptors from sparse point clouds. Our model can not only synthesize realistic driving scenes but also stitch and edit driving scenes. Experiments show that our model performs well in large-scale driving scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源