论文标题

使用生成对抗网络生成非平稳随机场

Generation of non-stationary stochastic fields using Generative Adversarial Networks

论文作者

Abdellatif, Alhasan, Elsheikh, Ahmed H., Busby, Daniel, Berthet, Philippe

论文摘要

在生成以观察到的数据为条件的地质相的背景下,与所有可能条件相对应的样品在训练集中通常不可用,因此这些实现的产生取决于训练有素的生成模型的通用能力。当应用于非平稳字段时,问题变得更加复杂。在这项工作中,我们研究了使用生成对抗网络(GAN)模型生成非平稳地质通道模式的问题,并检查了在给定训练集中从未见过的新空间模式下的模型概括能力。基于空间条件的开发训练方法允许有效学习空间条件(即非平稳地图)与实现之间的相关性,而无需使用其他损失术语或解决培训后每个新给定数据的优化问题。此外,我们的模型可以在2D和3D样品上进行培训。真实和人工数据集的结果表明,我们能够在训练样本之外生成地质上的实现,并且与目标图有很强的相关性。

In the context of generating geological facies conditioned on observed data, samples corresponding to all possible conditions are not generally available in the training set and hence the generation of these realizations depends primary on the generalization capability of the trained generative model. The problem becomes more complex when applied on non-stationary fields. In this work, we investigate the problem of using Generative Adversarial Networks (GANs) models to generate non-stationary geological channelized patterns and examine the models generalization capability at new spatial modes that were never seen in the given training set. The developed training method based on spatial-conditioning allowed for effective learning of the correlation between the spatial conditions (i.e. non-stationary maps) and the realizations implicitly without using additional loss terms or solving optimization problems for every new given data after training. In addition, our models can be trained on 2D and 3D samples. The results on real and artificial datasets show that we were able to generate geologically-plausible realizations beyond the training samples and with a strong correlation with the target maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源