论文标题

在刻度空间ra transform,ct图像重建中的属性和应用

On Scale Space Radon Transform, Properties and Application in CT Image Reconstruction

论文作者

Nacereddine, Nafaa, Ziou, Djemel, Goumeidane, Aicha Baya

论文摘要

由于ra变换(RT)由线积分函数组成,因此在计算机断层扫描(CT)系统上做出了一些建模假设,从而使图像重建分析方法,例如对文物和噪声敏感的过滤后反射(FBP)。另一方面,最近引入了一种新的积分变换,称为“比例太空变换”(SSRT),在此处,RT是一种特殊情况。由于其有趣的属性,例如良好的规模空间行为,SSRT具有已知的新应用程序。在本文中,为了提高这些方法的重建图像质量,我们建议用比例空间ra transform(SSRT)对X射线梁进行建模,其中,在CT系统元素的物理尺寸上进行的假设反映了现实。在描述了SSRT的基本属性和反转后,FBP算法用于重建来自SSRT Sinogram的图像,其中FBP中使用的RT频谱被SSRT和高斯核代替,在其频域中表达。作为质量度量,PSNR和SSIM用于比较Shepp-Logan头和拟人化腹部幻像的基于RT和SSRT的图像重建。第一个发现表明,基于SSRT的方法的表现优于基于RT的方法,尤其是当投影数量减少时,使其更适合需要低剂量辐射的应用,例如医疗X射线CT。尽管SSRT-FBP和RT-FBP具有最大的运行时,但实验表明SSRT-FBP对Poisson-Gaussian噪声损坏CT数据更强大。

Since the Radon transform (RT) consists in a line integral function, some modeling assumptions are made on Computed Tomography (CT) system, making image reconstruction analytical methods, such as Filtered Backprojection (FBP), sensitive to artifacts and noise. In the other hand, recently, a new integral transform, called Scale Space Radon Transform (SSRT), is introduced where, RT is a particular case. Thanks to its interesting properties, such as good scale space behavior, the SSRT has known number of new applications. In this paper, with the aim to improve the reconstructed image quality for these methods, we propose to model the X-ray beam with the Scale Space Radon Transform (SSRT) where, the assumptions done on the physical dimensions of the CT system elements reflect better the reality. After depicting the basic properties and the inversion of SSRT, the FBP algorithm is used to reconstruct the image from the SSRT sinogram where the RT spectrum used in FBP is replaced by SSRT and the Gaussian kernel, expressed in their frequency domain. PSNR and SSIM, as quality measures, are used to compare RT and SSRT-based image reconstruction on Shepp-Logan head and anthropomorphic abdominal phantoms. The first findings show that the SSRT-based method outperforms the methods based on RT, especially, when the number of projections is reduced, making it more appropriate for applications requiring low-dose radiation, such as medical X-ray CT. While SSRT-FBP and RT-FBP have utmost the same runtime, the experiments show that SSRT-FBP is more robust to Poisson-Gaussian noise corrupting CT data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源