论文标题

检测效率低的钟形实验的图理论方法

Graph-theoretic approach to Bell experiments with low detection efficiency

论文作者

Xu, Zhen-Peng, Steinberg, Jonathan, Singh, Jaskaran, López-Tarrida, Antonio J., Portillo, José R., Cabello, Adán

论文摘要

贝尔不等式测试,其中检测效率低于一定阈值$η_{\ rm {crit}} $可以使用局部隐藏可变性模型模拟。在这里,我们介绍了一种方法,以识别需要低$η_ {\ rm {Crit}} $的铃铛测试,并相对较低的dimension $ d $ $ d $。该方法有两个步骤。首先,我们展示了一个两分的铃铛不平等家庭,对于最大纠缠状态产生的相关性,$η_{\ rm {crit}} $可以由图形不变的函数的函数上限,并使用它来确定需要小$ $ $η___ _ {\ rm rm rm rm rm {crit}}。我们提出了示例,其中,对于最大纠缠的状态,$η_ {\ rm {crit}} \ le 0.516 $ for $ d = 16 $,$η_{\ rm {crit}} \ le 0.407 $ 0.407 $ for $ d = 28 $,以及$η_ $ d = 32 $。我们还表明证据表明,对于$η_{\ rm {crit}} $,可以将$ d = 16 $的上限降低至$ 0.415 $,并提出了一种方法,使$η_{\ rm {crit}} $的上限通过增加尺寸和设置数量来使$η_{\ rm {crit}} $任意地小。所有这些上限对于$η_{\ rm {Crit}} $都是有效的(在文献中是这种情况),假设没有噪声。第二步是基于这样的观察,即使用第一步中确定的初始状态和测量设置,我们可以构建较小的$η_ {\ rm {crit}} $的铃铛不等式,并构建更好的噪声稳健性。为此,我们使用了吉尔伯特算法的修改版本,该版本利用了第一步中使用的图形的自动形态。我们通过明确开发一个示例来说明其功能,其中$η_ {\ rm {crit}} $是$ 12.38 \%$降低,所需的可见性为$ 14.62 \%$,低于第一步中获得的上限。此处介绍的工具可以允许在长距离内开发高维无漏洞的铃铛测试和无漏洞的铃铛非局部性。

Bell inequality tests where the detection efficiency is below a certain threshold $η_{\rm{crit}}$ can be simulated with local hidden-variable models. Here, we introduce a method to identify Bell tests requiring low $η_{\rm{crit}}$ and relatively low dimension $d$ of the local quantum systems. The method has two steps. First, we show a family of bipartite Bell inequalities for which, for correlations produced by maximally entangled states, $η_{\rm{crit}}$ can be upper bounded by a function of some invariants of graphs, and use it to identify correlations that require small $η_{\rm{crit}}$. We present examples in which, for maximally entangled states, $η_{\rm{crit}} \le 0.516$ for $d=16$, $η_{\rm{crit}} \le 0.407$ for $d=28$, and $η_{\rm{crit}} \le 0.326$ for $d=32$. We also show evidence that the upper bound for $η_{\rm{crit}}$ can be lowered down to $0.415$ for $d=16$ and present a method to make the upper bound of $η_{\rm{crit}}$ arbitrarily small by increasing the dimension and the number of settings. All these upper bounds for $η_{\rm{crit}}$ are valid (as it is the case in the literature) assuming no noise. The second step is based on the observation that, using the initial state and measurement settings identified in the first step, we can construct Bell inequalities with smaller $η_{\rm{crit}}$ and better noise robustness. For that, we use a modified version of Gilbert's algorithm that takes advantage of the automorphisms of the graphs used in the first step. We illustrate its power by explicitly developing an example in which $η_{\rm{crit}}$ is $12.38\%$ lower and the required visibility is $14.62\%$ lower than the upper bounds obtained in the first step. The tools presented here may allow for developing high-dimensional loophole-free Bell tests and loophole-free Bell nonlocality over long distances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源