论文标题
差异量子算法优化的基本限制
Fundamental limitations on optimization in variational quantum algorithms
论文作者
论文摘要
探索近期量子设备的量子应用是具有理论和实际利益的量子信息科学的快速增长领域。建立这种近期量子应用的领先范式是变异量子算法(VQAS)。这些算法使用经典优化器来训练参数化的量子电路以完成某些任务,其中电路通常是随机初始初始化的。在这项工作中,我们证明,对于一系列此类随机电路,成本函数的变化范围通过调整电路中的任何局部量子门在具有较高概率的量子数中呈指数级消失。该结果可以自然地统一对基于梯度和无梯度的优化的限制,并揭示对VQA的训练景观的额外严格限制。因此,对VQA的训练性的基本局限性被阐明了,这表明希尔伯特空间中优化硬度的基本机制具有指数性的维度。我们通过代表性VQA的数值模拟进一步展示了结果的有效性。我们认为,这些结果将加深我们对VQA的可扩展性的理解,并阐明搜索具有优势的近期量子应用。
Exploring quantum applications of near-term quantum devices is a rapidly growing field of quantum information science with both theoretical and practical interests. A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs). These algorithms use a classical optimizer to train a parameterized quantum circuit to accomplish certain tasks, where the circuits are usually randomly initialized. In this work, we prove that for a broad class of such random circuits, the variation range of the cost function via adjusting any local quantum gate within the circuit vanishes exponentially in the number of qubits with a high probability. This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs. Hence a fundamental limitation on the trainability of VQAs is unraveled, indicating the essential mechanism of the optimization hardness in the Hilbert space with exponential dimension. We further showcase the validity of our results with numerical simulations of representative VQAs. We believe that these results would deepen our understanding of the scalability of VQAs and shed light on the search for near-term quantum applications with advantages.