论文标题

逃生区域之间的关系在立方多项式的参数空间中

Relations between Escape Regions in the Parameter Space of Cubic Polynomials

论文作者

Bonifant, Araceli, Estabrooks, Chad, Sharland, Thomas

论文摘要

我们描述了立方图参数空间的切片之间的拓扑关系。在论文\ cite {cp1}中,米尔诺定义曲线$ \ mathcal {s} _n $作为所有立方多项式的集合,带有明显的临界点$ p $。在本文中,我们将描述曲线$ \ MATHCAL {S} _1 $和$ \ MATHCAL {s} _2 $的连接性基因座的边界之间的关系。

We describe a topological relationship between slices of the parameter space of cubic maps. In the paper \cite{CP1}, Milnor defined the curves $\mathcal{S}_n$ as the set of all cubic polynomials with a marked critical point of period $p$. In this paper, we will describe a relationship between the boundaries of the connectedness loci in the curves $\mathcal{S}_1$ and $\mathcal{S}_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源