论文标题
探索从演示中学习的可行算法选项(LFD):一种参数化的复杂性方法
Exploring Viable Algorithmic Options for Learning from Demonstration (LfD): A Parameterized Complexity Approach
论文作者
论文摘要
在最坏的情况下,与许多机器学习任务的多项式时间难治性与启发式算法在实践中对这些任务的令人惊讶的解决性的关键似乎正在利用对现实世界数据集的限制。调查此类限制的一种方法是分析为什么启发式方法在限制下表现良好。一种互补的方法是系统地确定哪些限制有效且可靠的机器学习算法确实存在,也不存在。在本文中,我们展示了如何使用参数化的复杂性分析对算法选项进行这种系统探索,作为说明性示例,我们给出了第一个参数化的复杂性分析,并从示范中学习(LFD)进行了研究中的增量策略推论。相对于LFD的基本模型,我们表明我们的问题都无法有效地解决或相对于多个(通常同时)对环境,示范和策略的限制。我们还提供了第一个已知的限制,在该限制下,有效的可溶性是可能的,并讨论了我们的解决性能的含义,以及我们的LFD基本模型和实践中使用的LFD的更复杂模型的含义。
The key to reconciling the polynomial-time intractability of many machine learning tasks in the worst case with the surprising solvability of these tasks by heuristic algorithms in practice seems to be exploiting restrictions on real-world data sets. One approach to investigating such restrictions is to analyze why heuristics perform well under restrictions. A complementary approach would be to systematically determine under which sets of restrictions efficient and reliable machine learning algorithms do and do not exist. In this paper, we show how such a systematic exploration of algorithmic options can be done using parameterized complexity analysis, As an illustrative example, we give the first parameterized complexity analysis of batch and incremental policy inference under Learning from Demonstration (LfD). Relative to a basic model of LfD, we show that none of our problems can be solved efficiently either in general or relative to a number of (often simultaneous) restrictions on environments, demonstrations, and policies. We also give the first known restrictions under which efficient solvability is possible and discuss the implications of our solvability and unsolvability results for both our basic model of LfD and more complex models of LfD used in practice.