论文标题
重大抑郁症的加速功能性脑老化:来自中国参与者的大规模fMRI分析的证据
Accelerated functional brain aging in major depressive disorder: evidence from a large scale fMRI analysis of Chinese participants
论文作者
论文摘要
重度抑郁症(MDD)是最常见的心理健康状况之一,它因其与脑萎缩和死亡的关联而经过深入研究。最近的研究表明,预测年龄与年代年龄之间的偏差可能是加速大脑衰老以表征MDD的标志。但是,当前的结论通常是根据从高加索参与者收集的结构MRI信息得出的。这种生物标志物的普遍性需要由具有不同种族/种族背景和不同类型数据的受试者进一步验证。在这里,我们利用REST-META-MDD,这是一个从中国多个队列参与者那里收集的大规模休息状态fMRI数据集。我们基于1101个健康控制措施开发了一个堆叠的机器学习模型,该模型以有希望的准确性估算了一个受试者的年龄。然后将训练有素的模型应用于来自24个站点的1276名MDD患者。我们观察到,MDD患者表现出$+4.43美元的年度($ \ text {$ p $} <0.0001 $,$ \ text {Cohen's $ d $} = 0.35 $,$ \ text {95 \%ci}:1.86-3.91 $)与对照组相比。在MDD子组中,我们观察到具有统计学意义的$+2.09美元($ \ text {$ p $} <0.05 $,$ \ text {Cohen的$ d $} = 0.134483 $)抗抑郁用户与无药物相比。通过三种不同的机器学习算法进一步检查了观察到的统计关系。在中国参与者中观察到的阳性脑pad证实了MDD患者的大脑衰老的存在。对年龄估计的功能性大脑连接性的利用可从新维度验证现有发现。
Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality. Recent studies reveal that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD. However, current conclusions are usually drawn based on structural MRI information collected from Caucasian participants. The universality of this biomarker needs to be further validated by subjects with different ethnic/racial backgrounds and by different types of data. Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China. We develop a stacking machine learning model based on 1101 healthy controls, which estimates a subject's chronological age from fMRI with promising accuracy. The trained model is then applied to 1276 MDD patients from 24 sites. We observe that MDD patients exhibit a $+4.43$ years ($\text{$p$} < 0.0001$, $\text{Cohen's $d$} = 0.35$, $\text{95\% CI}:1.86 - 3.91$) higher brain-predicted age difference (brain-PAD) compared to controls. In the MDD subgroup, we observe a statistically significant $+2.09$ years ($\text{$p$} < 0.05$, $\text{Cohen's $d$} = 0.134483$) brain-PAD in antidepressant users compared to medication-free patients. The statistical relationship observed is further checked by three different machine learning algorithms. The positive brain-PAD observed in participants in China confirms the presence of accelerated brain aging in MDD patients. The utilization of functional brain connectivity for age estimation verifies existing findings from a new dimension.