论文标题
$ a_2 $ rogers-ramanujan二级身份的一个示例
An example of $A_2$ Rogers-Ramanujan bipartition identities of level 3
论文作者
论文摘要
我们给出了明显的积极的Andrews-Gordon类型系列,用于$ a^{(1)} _ 2 $的Aggine Lie代数的3级标准模块。我们还提供了相应的两部分身份,这些身份具有通过顶点操作员的表示理论解释。我们的证明是基于硼丹产品配方,即圆柱形分区的Corteel-Welsh递归,Celine姐妹的技术的$ Q $反面,以及由于Takigiku和作者而对Andrews Aundrews的分区理想的概括。
We give manifestly positive Andrews-Gordon type series for the level 3 standard modules of the affine Lie algebra of type $A^{(1)}_2$. We also give corresponding bipartition identities, which have representation theoretic interpretations via the vertex operators. Our proof is based on the Borodin product formula, the Corteel-Welsh recursion for the cylindric partitions, a $q$-version of Sister Celine's technique and a generalization of Andrews' partition ideals by finite automata due to Takigiku and the author.