论文标题
质量尺寸一个费米斯:建造黑暗
Mass dimension one fermions: Constructing darkness
论文作者
论文摘要
令$θ$为旋转一半的Wigner时间逆转操作员,让$ ϕ $为Weyl Spinor。然后,对于左移动$ ϕ $,构造$ ζ_λθϕ^\ ast $产生右转换的旋转器。相反,如果$ ϕ $是右式转换的旋转器,则构造$ ζ_ρθϕ^\ ast $在左移动旋转器中会导致($ζ_{λ,ρ} $是相位因素)。这使我们能够引入两组四组分旋转器。将$ζ_λ$和$ζ_ρ$设置为$ \ pm i $呈现所有八个旋转器作为电荷共轭操作员的特征〜$ \ mathcal {c} $(称为elko)。这使我们能够引入两个量子字段。对场及其伴随的时序产物的真空期望值的计算揭示了场的质量维度为一个。在规范的量子场理论意义上,这两个领域都是局部的。有趣的是,其中一个田地是费米子,另一个骨骼。引入的费米电场的质量维度和标准模型的物质场具有内在的不匹配。这样,它们就标准模型双线仪为新领域提供了自然的黑暗。统计和局部性由一组阶段控制。这些是明确给出的。然后,我们观察到,在$p_μp^μ= m^2 $中,狄拉克将$ 4 \ times 4 $的最简单平方根扎成了标识矩阵$ i $(in $ i \ i \ times m^2 $,同时引入了$γ_μp^μ$,作为分散性关系的左手方面的平方),并以此为nefientiit fifteen。当我们检查剩余的根时,我们将获得额外的骨气和费米克暗物质的旋转一半候选物。我们指出,到了190年代初期,迪拉克(Dirac)怀疑与他的费米斯(Fermions)在同一空间中存在旋转半玻色子。抽象截断。
Let $Θ$ be the Wigner time reversal operator for spin half and let $ϕ$ be a Weyl spinor. Then, for a left-transforming $ϕ$, the construct $ζ_λΘϕ^\ast$ yields a right-transforming spinor. If instead, $ϕ$ is a right-transforming spinor, then the construct $ζ_ρΘϕ^\ast$ results in a left-transforming spinor ($ζ_{λ,ρ}$ are phase factors). This allows us to introduce two sets of four-component spinors. Setting $ζ_λ$ and $ζ_ρ$ to $\pm i$ render all eight spinors as eigenspinor of the charge conjugation operator~$\mathcal{C}$ (called ELKO). This allows us to introduce two quantum fields. A calculation of the vacuum expectation value of the time-ordered product of the fields and their adjoints reveals the mass dimension of the fields to be one. Both fields are local in the canonical sense of quantum field theory. Interestingly, one of the fields is fermionic and the other bosonic. The mass dimension of the introduced fermionic fields and the matter fields of the Standard Model carry an intrinsic mismatch. As such, they provide natural darkness for the new fields with respect to the Standard Model doublets. The statistics and locality are controlled by a set of phases. These are explicitly given. Then we observe that in $p_μp^μ= m^2$, Dirac took the simplest square root of the $4\times 4$ identity matrix $I$ (in $I \times m^2 $, while introducing $γ_μp^μ$ as the square root of the left hand side of the dispersion relation), and as such he implicitly ignored the remaining fifteen. When we examine the remaining roots, we obtain additional bosonic and fermionic dark matter candidates of spin half. We point out that by early nineteen seventies, Dirac had suspected the existence of spin half bosons, in the same space as his fermions. Abstract truncated.