论文标题

流程完成网络:使用图形神经网络从不完整的流量信息中推断流体动力学

Flow Completion Network: Inferring the Fluid Dynamics from Incomplete Flow Information using Graph Neural Networks

论文作者

He, Xiaodong, Wang, Yinan, Li, Juan

论文摘要

本文介绍了一个新型的神经网络 - 流程完成网络(FCN) - 以从基于图形卷积注意网络的不完整数据中推断出流体动力学,包括流场和作用在身体上的力。 FCN由几个图形卷积层和空间注意层组成。它旨在推断与涡流力图(VFM)方法结合使用时流场的速度场和涡流力贡献。与流体动力学中采用的其他神经网络相比,FCN能够处理两个结构化数据和非结构化数据。提出的FCN的性能通过圆柱周围流场的计算流体动力学(CFD)数据进行评估。我们的模型预测的力系数对直接从CFD获得的力量进行了估算。此外,结果表明,我们的模型同时使用存在的流场信息和梯度信息,比传统的基于基于基于的神经网络(CNN)的基于传统的通知神经网络(CNN)的模型更好的性能。具体而言,在不同的雷诺数数量的所有第三酶和训练数据集的不同比例中,结果表明,在测试数据集中,拟议的FCN在测试数据集中达到了5.86%的最大均值均值误差,该误差远低于基于CNN的CNN和DNN基于CNN的模型(分别为42.32%和15.63%)。

This paper introduces a novel neural network - flow completion network (FCN) - to infer the fluid dynamics, includ-ing the flow field and the force acting on the body, from the incomplete data based on Graph Convolution AttentionNetwork. The FCN is composed of several graph convolution layers and spatial attention layers. It is designed to inferthe velocity field and the vortex force contribution of the flow field when combined with the vortex force map (VFM)method. Compared with other neural networks adopted in fluid dynamics, the FCN is capable of dealing with bothstructured data and unstructured data. The performance of the proposed FCN is assessed by the computational fluiddynamics (CFD) data on the flow field around a circular cylinder. The force coefficients predicted by our model arevalidated against those obtained directly from CFD. Moreover, it is shown that our model effectively utilizes the exist-ing flow field information and the gradient information simultaneously, giving a better performance than the traditionalconvolution neural network (CNN)-based and deep neural network (DNN)-based models. Specifically, among all thecases of different Reynolds numbers and different proportions of the training dataset, the results show that the proposedFCN achieves a maximum norm mean square error of 5.86% in the test dataset, which is much lower than those of thetraditional CNN-based and DNN-based models (42.32% and 15.63% respectively).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源