论文标题
建立算法系统基于多利益相关者的评估框架
Towards a multi-stakeholder value-based assessment framework for algorithmic systems
论文作者
论文摘要
为了调节机器学习驱动的系统(ML)系统,当前的审核过程主要集中于检测有害算法偏见。尽管这些策略已被证明具有影响力,但在审计过程中涉及ML驱动系统中伦理的文档中概述的一些价值仍然不足。这种未解决的值主要处理无法轻易量化的上下文因素。在本文中,我们开发了一个基于价值的评估框架,该框架不限于偏见审计,并涵盖了算法系统的重要道德原则。我们的框架提出了值的圆形布置,并具有两个双相情感尺寸,这些躁郁症使得明确的动机和潜在的紧张局势。为了实现这些高级原则,然后将价值分解为特定的标准及其表现形式。但是,其中一些特定于价值的标准是相互排斥的,需要协商。与仅依靠ML研究人员和从业者的意见的其他一些其他审计框架相反,我们认为有必要包括利益相关者,这些利益相关者提出各种观点,以系统地谈判和巩固价值和标准紧张。为此,我们将利益相关者映射出不同的见解需求,并为向他们传达价值表现的量身定制手段。因此,我们通过评估框架为当前的ML审计实践做出了贡献,该实践可视化价值观之间的亲密关系和紧张局势,并给出了如何对其进行操作的指南,同时向广泛的利益相关者开放评估和审议过程。
In an effort to regulate Machine Learning-driven (ML) systems, current auditing processes mostly focus on detecting harmful algorithmic biases. While these strategies have proven to be impactful, some values outlined in documents dealing with ethics in ML-driven systems are still underrepresented in auditing processes. Such unaddressed values mainly deal with contextual factors that cannot be easily quantified. In this paper, we develop a value-based assessment framework that is not limited to bias auditing and that covers prominent ethical principles for algorithmic systems. Our framework presents a circular arrangement of values with two bipolar dimensions that make common motivations and potential tensions explicit. In order to operationalize these high-level principles, values are then broken down into specific criteria and their manifestations. However, some of these value-specific criteria are mutually exclusive and require negotiation. As opposed to some other auditing frameworks that merely rely on ML researchers' and practitioners' input, we argue that it is necessary to include stakeholders that present diverse standpoints to systematically negotiate and consolidate value and criteria tensions. To that end, we map stakeholders with different insight needs, and assign tailored means for communicating value manifestations to them. We, therefore, contribute to current ML auditing practices with an assessment framework that visualizes closeness and tensions between values and we give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders.