论文标题

悬浮纳米颗粒的可扩展全光冷阻尼

Scalable all-optical cold damping of levitated nanoparticles

论文作者

Vijayan, Jayadev, Zhang, Zhao, Piotrowski, Johannes, Windey, Dominik, van der Laan, Fons, Frimmer, Martin, Novotny, Lukas

论文摘要

悬空动力学领域在控制和研究悬浮纳米颗粒的运动方面取得了重大进展。运动控制依赖于通过腔体或基于测量的反馈通过外力的自主反馈。单个纳米颗粒的基于测量的基础状态冷却的最新证明采用线性速度反馈,也称为冷阻尼,并需要通过外部电极在带电的颗粒上使用静电力。在这里,我们基于可扩展到多个颗粒的陷阱位置的空间调制,引入了一种新型的全光冷阻尼方案。该方案依靠使用可编程光学镊子来对每个镊子的陷阱频率和位置提供完全独立的控制。我们表明,该技术以$ 2 \ times 10^{ - 6} \,$ MBAR的压力冷却颗粒的质量运动,$ MK,并通过同时冷却两个粒子的运动来证明其可扩展性。我们的工作铺平了研究颗粒之间的量子相互作用,在没有基于空腔的冷却,电极或带电的颗粒的情况下实现粒子运动的3D量子控制,以及在悬浮的光学机械系统中探测多方的纠缠。

The field of levitodynamics has made significant progress towards controlling and studying the motion of a levitated nanoparticle. Motional control relies on either autonomous feedback via a cavity or measurement-based feedback via external forces. Recent demonstrations of measurement-based ground-state cooling of a single nanoparticle employ linear velocity feedback, also called cold damping, and require the use of electrostatic forces on charged particles via external electrodes. Here we introduce a novel all-optical cold damping scheme based on spatial modulation of the trap position that is scalable to multiple particles. The scheme relies on using programmable optical tweezers to provide full independent control over trap frequency and position of each tweezer. We show that the technique cools the center-of-mass motion of particles down to $17\,$mK at a pressure of $2 \times 10^{-6}\,$mbar and demonstrate its scalability by simultaneously cooling the motion of two particles. Our work paves the way towards studying quantum interactions between particles, achieving 3D quantum control of particle motion without cavity-based cooling, electrodes or charged particles, and probing multipartite entanglement in levitated optomechanical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源