论文标题

Galaxy UGC 2885的银河部组件映射通过机器学习分类

Galactic Component Mapping of Galaxy UGC 2885 by Machine Learning Classification

论文作者

Kwik, Robin J., Wang, Jinfei, Barmby, Pauline, Holwerda, Benne W.

论文摘要

星系组件的自动分类对于理解星系的形成和演变很重要。传统上,只有将较大的星系结构(例如螺旋臂,凸起和圆盘)进行分类。在这里,我们使用机器学习(ML)像素分类来自动对大型螺旋星系UGC的数字图像中的所有星系组件自动分类。星系组件包括年轻的恒星人口,旧的恒星种群,旧的恒星人口,尘埃道,尘埃道,星系中心,外盘,外盘和celestial背景。我们测试了三个ML模型:最大似然分类器(MLC),随机森林(RF)和支持向量机(SVM)。我们使用高分辨率哈勃太空望远镜(HST)数字图像以及源自HST图像的质地特征,来自HST图像的频带比和距离层。纹理特征通常用于遥感研究中,可用于识别数字图像中的模式。我们运行具有HST数字图像,纹理特征,频带比率和距离层不同组合的ML分类模型,以确定银河系分类的最有用信息。纹理特征和距离层对于星系组件识别最有用,SVM和RF型号表现最好。 MLC模型的总体表现较差,但在某些情况下具有与SVM和RF相当的性能。总体而言,这些模型最好在分类最独特的星系组件(包括星系中心,外盘和天体背景)上。最大的混乱发生在年轻的恒星人口,老恒星人口和尘埃道之间。我们建议对小型银河系结构的天文学研究进行进一步的实验。

Automating classification of galaxy components is important for understanding the formation and evolution of galaxies. Traditionally, only the larger galaxy structures such as the spiral arms, bulge, and disc are classified. Here we use machine learning (ML) pixel-by-pixel classification to automatically classify all galaxy components within digital imagery of massive spiral galaxy UGC 2885. Galaxy components include young stellar population, old stellar population, dust lanes, galaxy center, outer disc, and celestial background. We test three ML models: maximum likelihood classifier (MLC), random forest (RF), and support vector machine (SVM). We use high-resolution Hubble Space Telescope (HST) digital imagery along with textural features derived from HST imagery, band ratios derived from HST imagery, and distance layers. Textural features are typically used in remote sensing studies and are useful for identifying patterns within digital imagery. We run ML classification models with different combinations of HST digital imagery, textural features, band ratios, and distance layers to determine the most useful information for galaxy component classification. Textural features and distance layers are most useful for galaxy component identification, with the SVM and RF models performing the best. The MLC model performs worse overall but has comparable performance to SVM and RF in some circumstances. Overall, the models are best at classifying the most spectrally unique galaxy components including the galaxy center, outer disc, and celestial background. The most confusion occurs between the young stellar population, old stellar population, and dust lanes. We suggest further experimentation with textural features for astronomical research on small-scale galactic structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源