论文标题

关于随机正常矩阵特征值模量的特征多项式

On the characteristic polynomial of the eigenvalue moduli of random normal matrices

论文作者

Byun, Sung-Soo, Charlier, Christophe

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study the characteristic polynomial $p_{n}(x)=\prod_{j=1}^{n}(|z_{j}|-x)$ where the $z_{j}$ are drawn from the Mittag-Leffler ensemble, i.e. a two-dimensional determinantal point process which generalizes the Ginibre point process. We obtain precise large $n$ asymptotics for the moment generating function $\mathbb{E}[e^{\frac{u}π \, \mathrm{Im} \ln p_{n}(r)}e^{a \, \mathrm{Re} \ln p_{n}(r)}]$, in the case where $r$ is in the bulk, $u \in \mathbb{R}$ and $a \in \mathbb{N}$. This expectation involves an $n \times n$ determinant whose weight is supported on the whole complex plane, is rotation-invariant, and has both jump- and root-type singularities along the circle centered at $0$ of radius $r$. This "circular" root-type singularity differs from earlier works on Fisher-Hartwig singularities, and surprisingly yields a new kind of ingredient in the asymptotics, the so-called associated Hermite polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源