论文标题
部分可观测时空混沌系统的无模型预测
A Music-Therapy Robotic Platform for Children with Autism: A Pilot Study
论文作者
论文摘要
自闭症谱系障碍(ASD)的儿童在言语和非语言沟通技巧上经历了缺陷,包括运动控制,转弯和情绪识别。创新的技术,例如社会辅助机器人,已证明是自闭症治疗的一种可行方法。本文介绍了一个新型的基于机器人的音乐治疗平台,用于建模和改善ASD儿童的社会反应和行为。我们的自主社会互动系统由三个模块组成。我们采用了短期傅立叶变换和Levenshtein距离来满足设计要求:a)“音乐检测”和b)“智能评分和反馈”,这使NAO可以理解音乐,并为用户提供其他练习和口头反馈。我们设计并实施了六个人类机器人交流(HRI)会议,包括四个干预会议。有9名ASD和7个通常发育的儿童参加了五十个HRI实验课程。使用我们的平台,我们使用电动活动(EDA)信号收集和分析了有关社会行为变化和情绪识别的数据。我们的实验结果表明,大多数参与者能够以〜70%的精度完成运动控制任务。在9名ASD参与者中,有6名在播放音乐时表现出稳定的转弯行为。使用支持向量机的自动情绪分类的结果表明,可以通过EDA Bio-Signals检测到ASD组中的情绪唤醒。总而言之,我们的数据分析的结果(包括使用EDA信号的情绪分类)表明,拟议的基于机器人的基于机器人的治疗平台是一种有吸引力且有希望的辅助工具,可促进ASD儿童的良好运动控制和转弯技能的提高。
Children with Autism Spectrum Disorder (ASD) experience deficits in verbal and nonverbal communication skills including motor control, turn-taking, and emotion recognition. Innovative technology, such as socially assistive robots, has shown to be a viable method for Autism therapy. This paper presents a novel robot-based music-therapy platform for modeling and improving the social responses and behaviors of children with ASD. Our autonomous social interactive system consists of three modules. We adopted Short-time Fourier Transform and Levenshtein distance to fulfill the design requirements: a) "music detection" and b) "smart scoring and feedback", which allows NAO to understand music and provide additional practice and oral feedback to the users as applicable. We designed and implemented six Human-Robot-Interaction (HRI) sessions including four intervention sessions. Nine children with ASD and seven Typically Developing participated in a total of fifty HRI experimental sessions. Using our platform, we collected and analyzed data on social behavioral changes and emotion recognition using Electrodermal Activity (EDA) signals. The results of our experiments demonstrate most of the participants were able to complete motor control tasks with ~70% accuracy. Six out of the 9 ASD participants showed stable turn-taking behavior when playing music. The results of automated emotion classification using Support Vector Machines illustrate that emotional arousal in the ASD group can be detected and well recognized via EDA bio-signals. In summary, the results of our data analyses, including emotion classification using EDA signals, indicate that the proposed robot-music based therapy platform is an attractive and promising assistive tool to facilitate the improvement of fine motor control and turn-taking skills in children with ASD.