论文标题

针对以用户为中心的大型MIMO的预编码和功率的分布式和关节优化

Distributed and Joint Optimization of Precoding and Power for User-Centric Cell-Free Massive MIMO

论文作者

Yu, Hongkang, Ye, Xinquan, Chen, Yijian

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the cell-free massive multiple-input multiple-output (CF mMIMO) system, the centralized transmission scheme is widely adopted to manage the inter-user interference. Unfortunately, its implementation is limited by the extensive signaling overhead between the central process unit (CPU) and the access points (APs). To solve this problem, we propose a distributed downlink transmission scheme in this letter. First, the null space-based precoding is used to cancel the interference to partial users, where only a portion of channel state information (CSI) needs to be shared among the AP cluster. Based on this, the dual decomposition method is adopted to jointly optimize the precoder and power control, where the calculation can be performed independently by each AP cluster with closed-form expression. With very few iterations, our distributed scheme achieves the same performance as the centralized one. Moreover, it significantly reduces the information exchange to the CPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源