论文标题
局部对抗领域的概括
Localized Adversarial Domain Generalization
论文作者
论文摘要
深度学习方法可能难以处理训练数据中看不到的领域变化,这可能会导致它们无法很好地推广到看不见的领域。这导致了对领域概括(DG)的研究关注,该关注旨在旨在模型的分布能力。对抗领域的概括是一种流行的DG方法,但是常规方法(1)难以充分地位,以使当地社区混合在各个领域中; (2)可能会遭受特征空间过度崩溃,这可能威胁到概括性能。为了解决这些局限性,我们提出了局部的对抗领域的概括,并通过空间紧凑度维持〜(LADG)构成了两个主要贡献。首先,我们建议对抗性局部分类器作为域歧视者,以及原则上的主要分支。这构建了一个Min-Max游戏,其特征器的目的是生产本地混合的域。其次,我们建议使用编码率损失来减轻特征空间过度崩溃。我们在Wilds DG基准测试中进行了全面的实验,以验证我们的方法,LADG的表现优于大多数数据集中的竞争对手。
Deep learning methods can struggle to handle domain shifts not seen in training data, which can cause them to not generalize well to unseen domains. This has led to research attention on domain generalization (DG), which aims to the model's generalization ability to out-of-distribution. Adversarial domain generalization is a popular approach to DG, but conventional approaches (1) struggle to sufficiently align features so that local neighborhoods are mixed across domains; and (2) can suffer from feature space over collapse which can threaten generalization performance. To address these limitations, we propose localized adversarial domain generalization with space compactness maintenance~(LADG) which constitutes two major contributions. First, we propose an adversarial localized classifier as the domain discriminator, along with a principled primary branch. This constructs a min-max game whereby the aim of the featurizer is to produce locally mixed domains. Second, we propose to use a coding-rate loss to alleviate feature space over collapse. We conduct comprehensive experiments on the Wilds DG benchmark to validate our approach, where LADG outperforms leading competitors on most datasets.