论文标题

年龄驱动的联合抽样和基于非阶段的物联网的日程安排

Age-driven Joint Sampling and Non-slot Based Scheduling for Industrial Internet of Things

论文作者

Cao, Yali, Teng, Yinglei, Song, Mei, Wang, Nan

论文摘要

有效控制时间敏感的工业应用取决于基本传感器的数据实时传输。在本文中,通过信息年龄(AOI)来量化数据新鲜度,我们共同设计采样和基于非阶段的调度策略,以最大程度地减少传感器之间最大的信息年龄(MAOI),并具有平均能源成本的限制和有限的队列稳定性的限制。为了克服涉及这种复杂随机过程的高耦合的顽固性,我们首先关注单传感器时间平均的AOI优化问题,并将约束的Markov决策过程(CMDP)转换为Lagrangian方法的不受约束的Markov决策过程(MDP)。随着无限的平均能量和AOI表达的消耗为Bellman方程,可以通过稳态分布概率来解决单传感器时间平均AOI优化问题。此外,我们为多传感器方案提出了一个低复杂性的子最佳采样和半分布的调度方案。仿真结果表明,所提出的方案大大降低了MAOI,同时在多个传感器的采样率和服务速率之间达到平衡。

Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors. Quantifying the data freshness through age of information (AoI), in this paper, we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information (MAoI) among sensors with the constraints of average energy cost and finite queue stability. To overcome the intractability involving high couplings of such a complex stochastic process, we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process (CMDP) into an unconstrained Markov decision process (MDP) by the Lagrangian method. With the infinite-time average energy and AoI expression expended as the Bellman equation, the single-sensor time-average AoI optimization problem can be approached through the steady-state distribution probability. Further, we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario. The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源