论文标题
Wiener空间上Weyl的假差分线的阳性结果
Positivity results for Weyl's pseudodifferential calculus on the Wiener space
论文作者
论文摘要
本文介绍了假数分化的演算的阳性特性,概括了Weyl的经典量化,并将其设置在无限的维相空间,即Wiener空间。在此框架中,我们表明一个正符号通常不会给出一个正面操作员。为了衡量非积极性,我们建立了Gårding的不平等,该不平等适用于手头的符号类别。然而,对于具有径向方面的符号,其他假设可确保相关操作员的积极性。
This paper deals with positivity properties for a pseudodifferential calculus, generalizing Weyl's classical quantization, and set on an infinite dimensional phase space, the Wiener space. In this frame, we show that a positive symbol does not, in general, give a positive operator. In order to measure the nonpositivity, we establish a Gårding's inequality, which holds for the symbol classes at hand. Nevertheless, for symbols with radial aspects, additional assumptions ensure the positivity of the associated operator.