论文标题

利用数字表面模型来推断超分辨率的遥感图像

Exploiting Digital Surface Models for Inferring Super-Resolution for Remotely Sensed Images

论文作者

Karatsiolis, Savvas, Padubidri, Chirag, Kamilaris, Andreas

论文摘要

尽管应用于自然图像的大量成功的超分辨率重建(SRR)模型,但它们在遥感图像中的应用往往会产生较差的结果。遥感图像通常比自然图像更为复杂,并且具有较低的分辨率,其中包含噪音,并且通常描绘了大纹理表面。结果,在遥感图像上应用非专业的SRR模型会导致人工制品和不良的重建。为了解决这些问题,本文提出了一种受到先前研究工作启发的架构,引入了一种新的方法来迫使SRR模型输出逼真的遥感图像:而不是依靠功能空间相似性作为感知损失,而是考虑了从图像的标准数字表面模型(NDSM)推断出的像素级信息。该策略允许在训练模型中应用更具信息的更新,该模型是从任务(高程图推理)来源的,该模型与遥感密切相关。尽管如此,在生产过程中不需要NDSM辅助信息,因此模型除了其低分辨率对以外没有任何其他数据,因此该模型还没有任何其他数据。我们在两个远程感知的不同空间分辨率的数据集上评估了我们的模型,这些数据集也包含图像的DSM对:DFC2018数据集和包含卢森堡国家激光雷达飞行的数据集。根据视觉检查,推断的超分辨率图像表现出特别优越的质量。特别是,高分辨率DFC2018数据集的结果是现实的,几乎与地面真相图像没有区别。

Despite the plethora of successful Super-Resolution Reconstruction (SRR) models applied to natural images, their application to remote sensing imagery tends to produce poor results. Remote sensing imagery is often more complicated than natural images and has its peculiarities such as being of lower resolution, it contains noise, and often depicting large textured surfaces. As a result, applying non-specialized SRR models on remote sensing imagery results in artifacts and poor reconstructions. To address these problems, this paper proposes an architecture inspired by previous research work, introducing a novel approach for forcing an SRR model to output realistic remote sensing images: instead of relying on feature-space similarities as a perceptual loss, the model considers pixel-level information inferred from the normalized Digital Surface Model (nDSM) of the image. This strategy allows the application of better-informed updates during the training of the model which sources from a task (elevation map inference) that is closely related to remote sensing. Nonetheless, the nDSM auxiliary information is not required during production and thus the model infers a super-resolution image without any additional data besides its low-resolution pairs. We assess our model on two remotely sensed datasets of different spatial resolutions that also contain the DSM pairs of the images: the DFC2018 dataset and the dataset containing the national Lidar fly-by of Luxembourg. Based on visual inspection, the inferred super-resolution images exhibit particularly superior quality. In particular, the results for the high-resolution DFC2018 dataset are realistic and almost indistinguishable from the ground truth images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源