论文标题
构建下一千种语言的机器翻译系统
Building Machine Translation Systems for the Next Thousand Languages
论文作者
论文摘要
在本文中,我们分享了我们努力建立能够翻译一千多种语言的实用机器翻译(MT)系统的发现。我们在三个研究领域中描述了结果:(i)通过利用半监督预训练的语言识别和开发数据驱动的过滤技术来构建1500多种语言的干净,网台数据集; (ii)通过利用大规模多语言模型来开发用于服务不足的语言的实用MT模型,该模型训练了有监督的并行数据,以使用100多种高资源的语言和单语言数据集,以增加1000多种语言; (iii)研究这些语言的评估指标的局限性,并对我们MT模型的输出进行定性分析,突出显示了这些类型的模型的几种频繁误差模式。我们希望我们的工作为旨在为当前研究的语言构建MT系统的从业者提供有用的见解,并突出显示可以补充数据 - 帕克斯设置中大量多语言模型的弱点的研究方向。
In this paper we share findings from our effort to build practical machine translation (MT) systems capable of translating across over one thousand languages. We describe results in three research domains: (i) Building clean, web-mined datasets for 1500+ languages by leveraging semi-supervised pre-training for language identification and developing data-driven filtering techniques; (ii) Developing practical MT models for under-served languages by leveraging massively multilingual models trained with supervised parallel data for over 100 high-resource languages and monolingual datasets for an additional 1000+ languages; and (iii) Studying the limitations of evaluation metrics for these languages and conducting qualitative analysis of the outputs from our MT models, highlighting several frequent error modes of these types of models. We hope that our work provides useful insights to practitioners working towards building MT systems for currently understudied languages, and highlights research directions that can complement the weaknesses of massively multilingual models in data-sparse settings.