论文标题
Softpool ++:用于点云完成的编码器网络
SoftPool++: An Encoder-Decoder Network for Point Cloud Completion
论文作者
论文摘要
我们为点云完成任务提出了一个新颖的卷积操作员。我们方法的一个引人注目的特征是,相反,与相关的工作相反,它不需要任何最大功能或体素化操作。取而代之的是,用于学习编码器提取物中的点云嵌入的拟议操作员通过柔和的特征激活来从点云中置入置换式特征,这些功能激活能够保留细粒的几何细节。然后将这些功能传递到解码器体系结构。由于编码器的压缩,这种类型的体系结构的典型限制是它们倾向于失去输入形状结构的一部分。我们建议通过使用专门为点云设计的跳过连接来克服这一限制,在该连接中,建立编码器和解码器中相应层之间的链接。作为这些连接的一部分,我们引入了一个转换矩阵,该矩阵将功能从编码器到解码器,反之亦然。从Shapenet数据集中进行部分扫描的对象完成任务的定量和定性结果表明,在低和高分辨率下,合并我们的方法在形状完成中实现了最先进的性能。
We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach is that, conversely to related work it does not require any max-pooling or voxelization operation. Instead, the proposed operator used to learn the point cloud embedding in the encoder extracts permutation-invariant features from the point cloud via a soft-pooling of feature activations, which are able to preserve fine-grained geometric details. These features are then passed on to a decoder architecture. Due to the compression in the encoder, a typical limitation of this type of architectures is that they tend to lose parts of the input shape structure. We propose to overcome this limitation by using skip connections specifically devised for point clouds, where links between corresponding layers in the encoder and the decoder are established. As part of these connections, we introduce a transformation matrix that projects the features from the encoder to the decoder and vice-versa. The quantitative and qualitative results on the task of object completion from partial scans on the ShapeNet dataset show that incorporating our approach achieves state-of-the-art performance in shape completion both at low and high resolutions.