论文标题

WKGM:平行成像重建的重量K空间生成模型

WKGM: Weight-K-space Generative Model for Parallel Imaging Reconstruction

论文作者

Tu, Zongjiang, Liu, Die, Wang, Xiaoqing, Jiang, Chen, Zhu, Pengwen, Zhang, Minghui, Wang, Shanshan, Liang, Dong, Liu, Qiegen

论文摘要

近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,它仍然存在一些局限性,例如现有方法的鲁棒性和灵活性具有很大的缺陷。在这项工作中,我们提出了一种方法,可以通过稳健的生成建模来探索K空间域学习,以实现灵活的无校准PI重建,创建的权重-K空间生成模型(WKGM)。具体而言,WKGM是一种广义的K空间域模型,在该模型中,K空间加权技术和高维空间增强设计有效地用于基于得分的生成模型训练,从而进行了良好且强大的重建。此外,WKGM是灵活的,因此可以与各种传统的K-Space PI模型协同结合,这可以充分利用多型层数据和无eREALIZECALIBLATION-PI之间的相关性。即使我们的模型仅在500张图像上进行了培训,但具有不同采样模式和加速因子的实验结果表明,WKGM可以通过良好的K-Space生成剂先验获得最新的重建结果。

Deep learning based parallel imaging (PI) has made great progresses in recent years to accelerate magnetic resonance imaging (MRI). Nevertheless, it still has some limitations, such as the robustness and flexibility of existing methods have great deficiency. In this work, we propose a method to explore the k-space domain learning via robust generative modeling for flexible calibration-less PI reconstruction, coined weight-k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space augmentation design are efficiently incorporated for score-based generative model training, resulting in good and robust reconstructions. In addition, WKGM is flexible and thus can be synergistically combined with various traditional k-space PI models, which can make full use of the correlation between multi-coil data and realizecalibration-less PI. Even though our model was trained on only 500 images, experimental results with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results with the well-learned k-space generative prior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源