论文标题
基于智能手机的角膜地形师的角膜核分类器
Keratoconus Classifier for Smartphone-based Corneal Topographer
论文作者
论文摘要
圆锥角膜是一种严重的眼科疾病,导致角膜变形。它影响了10-25岁的人们,是该人口统计学中失明的主要原因。角膜地形是圆锥角膜诊断的黄金标准。这是一个使用昂贵且笨重的医疗设备(称为角膜地形师)进行的无创过程。这使得对大量人口无法访问,尤其是在全球南部。已经提出了基于低成本的智能手机角膜地形图,例如SmartKC,以使圆锥角膜诊断可访问。与医学级的地形师类似,SmartKC输出曲率热图和定量指标,需要由医生进行圆锥角膜诊断来评估。评估这些热图和定量值的自动方案在筛查圆锥角膜的地方至关重要,在没有医生的地区。在这项工作中,我们提出了一个双头卷积神经网络(CNN),用于对SmartKC生成的热图进行分类。由于SmartKC是一种新设备,并且只有一个小数据集(114个样本),因此我们开发了一种2阶段的转移学习策略 - 使用从医疗级地形学家收集的历史数据和SMARTKC数据的子集,以满意地培训我们的网络。这与我们特定于域的数据增强相结合,敏感性为91.3%,特异性为94.2%。
Keratoconus is a severe eye disease that leads to deformation of the cornea. It impacts people aged 10-25 years and is the leading cause of blindness in that demography. Corneal topography is the gold standard for keratoconus diagnosis. It is a non-invasive process performed using expensive and bulky medical devices called corneal topographers. This makes it inaccessible to large populations, especially in the Global South. Low-cost smartphone-based corneal topographers, such as SmartKC, have been proposed to make keratoconus diagnosis accessible. Similar to medical-grade topographers, SmartKC outputs curvature heatmaps and quantitative metrics that need to be evaluated by doctors for keratoconus diagnosis. An automatic scheme for evaluation of these heatmaps and quantitative values can play a crucial role in screening keratoconus in areas where doctors are not available. In this work, we propose a dual-head convolutional neural network (CNN) for classifying keratoconus on the heatmaps generated by SmartKC. Since SmartKC is a new device and only had a small dataset (114 samples), we developed a 2-stage transfer learning strategy -- using historical data collected from a medical-grade topographer and a subset of SmartKC data -- to satisfactorily train our network. This, combined with our domain-specific data augmentations, achieved a sensitivity of 91.3% and a specificity of 94.2%.