论文标题

使用多信息融合深度语义分割网络自动速度挑选

Automatic Velocity Picking Using a Multi-Information Fusion Deep Semantic Segmentation Network

论文作者

Wang, H. T., Zhang, J. S., Zhao, Z. X., Zhang, C. X., Li, L., Yang, Z. Y., Geng, W. F.

论文摘要

数十年来,已经研究了速度拾取是地震数据处理的关键步骤。尽管手动采摘可以从Prestack Gathers的速度光谱中产生准确的正常移动(NMO)速度,但它很耗时,并且随着大量地震数据的出现而变得不可行。因此,已经开发了许多自动速度拾取方法。近年来,深度学习(DL)方法在具有中等和高信噪比(SNR)的地震数据上产生了良好的结果。不幸的是,在低SNR的情况下,它仍然缺乏一种自动生成准确速度的选择方法。在本文中,我们提出了一个多信息融合网络(MIFN),以估算从速度光谱和堆栈聚集段(SGS)的融合信息中堆叠速度。特别是,我们根据速度光谱图像将速度选择问题转换为语义分割问题。同时,SGS提供的信息用作网络中的先验来协助细分。两个现场数据集上的实验结果表明,对于使用中和高SNR的场景,MIFN的采摘结果稳定且准确,并且在低SNR方案中也表现良好。

Velocity picking, a critical step in seismic data processing, has been studied for decades. Although manual picking can produce accurate normal moveout (NMO) velocities from the velocity spectra of prestack gathers, it is time-consuming and becomes infeasible with the emergence of large amount of seismic data. Numerous automatic velocity picking methods have thus been developed. In recent years, deep learning (DL) methods have produced good results on the seismic data with medium and high signal-to-noise ratios (SNR). Unfortunately, it still lacks a picking method to automatically generate accurate velocities in the situations of low SNR. In this paper, we propose a multi-information fusion network (MIFN) to estimate stacking velocity from the fusion information of velocity spectra and stack gather segments (SGS). In particular, we transform the velocity picking problem into a semantic segmentation problem based on the velocity spectrum images. Meanwhile, the information provided by SGS is used as a prior in the network to assist segmentation. The experimental results on two field datasets show that the picking results of MIFN are stable and accurate for the scenarios with medium and high SNR, and it also performs well in low SNR scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源